服务机器人场景分析:从概率建模到目标识别
1. 引言
在日常生活场景中,实现高识别率以及合适的姿态确定精度,并保证可接受的速度和成本,是服务机器人场景分析的重要目标。为了达成这一目标,我们的方法遵循两个指导原则:
- 对目标类别和姿态的不确定性进行有效处理,以此作为多源测量数据关联、融合和决策的基础。
- 采用主动感知机制,即利用机器人的运动能力,根据系统当前的信息状态以及基于模型和几何的预测,提供最佳的相机视角。
同时,我们也非常注重广泛且系统的测试与评估,使用了配备头部立体相机的 DESIRE 双臂移动平台。
2. 概率场景建模
2.1 相关工作
3D 中刚性变换(尤其是方向)的表示是众多领域的核心问题,不同领域有不同的表示方法,以下是一些常见的 3D 旋转表示方法及其优缺点:
| 表示方法 | 优点 | 缺点 |
| ---- | ---- | ---- |
| 旋转矩阵 | - | 重归一化困难 |
| 欧拉角 | - | 变换下不具有不变性,存在奇点 |
| 罗德里格斯向量 | - | 没有简单的组合算法 |
| 单位四元数 | 用较少参数表示 3D 旋转 | 未提供概率分布 |
此外,还有一些其他的方法,如 Choe 通过切空间上的投影高斯表示旋转的概率分布,但只处理集中分布且未考虑平移;Goddard 和 Abidi 使用双四元数进行运动跟踪,捕捉了旋转和平移的相关性,但要求初始估计足够确定且融合信息足够聚焦;Antone 建议使用宾汉分布表示弱信息,但未给出信息融合或不确定信息传播的实用算法,且重归一化计算成本高,也不