garlic
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
72、概率分类器评估新指标:距离阈值曲线下面积
本文提出了一种新的多类概率分类器评估指标——距离阈值曲线下面积(AUCdt),并结合多种距离度量方法(如城市街区距离、Jeffrey散度和地球移动距离)进行扩展研究。通过使用肺图像数据库联盟(LIDC)数据集,实验验证了AUCdt在医学影像及其他多类分类任务中的有效性,并探讨了不同距离度量的适用场景。文章旨在为多类概率分类器提供更精确和灵活的性能评估手段。原创 2025-07-16 06:45:26 · 19 阅读 · 0 评论 -
71、大规模多类视觉分类的PmSVM优化方案
本文提出了一种适用于大规模多类视觉分类任务的优化方案,包括解决类别不平衡问题的平衡袋装PmSVM方法和提升训练效率的并行PmSVM训练策略。通过在多个大规模数据集上的实验验证,该方法在训练速度方面相较于传统方法有显著提升,同时在分类准确率上也表现出色,尤其在大规模数据集ILSVRC 1000上效果突出。未来的研究方向包括内存优化与数据压缩技术,以应对更大规模的数据集挑战。原创 2025-07-15 12:29:05 · 17 阅读 · 0 评论 -
70、大规模视觉分类与真实标签推断方法解析
本文探讨了大规模视觉分类和从标注数据中推断真实标签这两个重要研究方向的挑战与解决方案。在视觉分类部分,重点分析了传统方法在大规模数据集(如ImageNet)上的局限性,并介绍了Power Mean SVM(PmSVM)及其改进策略,包括平衡装袋和并行训练,显著提升了训练效率和分类准确性。在真实标签推断方面,文章提出了一种基于矩阵映射和校正的新模型,有效降低了标注误差,并展示了其优于多数投票和加权多数投票的表现。最后,文章还总结了未来的研究方向,如处理连续标注、提升分类器泛化能力及优化计算资源利用等。原创 2025-07-14 13:27:51 · 18 阅读 · 0 评论 -
69、轻量级组合方法推断真实标签
本文提出了一种轻量级组合方法,用于从众包标注数据中推断真实标签。该方法通过将标注者和任务分别映射到一维和二维欧几里得空间,并利用两阶段贪心算法进行优化,从而生成最接近原始符号矩阵的‘校正’矩阵。基于此矩阵,进一步采用多数投票法或基于标注者行为建模的方法估计每个任务的真实标签。实验表明,该方法在多个真实数据集上表现优于传统的多数投票法和加权多数投票法,且无需先验知识。文章还总结了方法的优势、局限性,并指出了未来的研究方向。原创 2025-07-13 09:13:24 · 14 阅读 · 0 评论 -
68、网络流量预测与众包标注的高效解决方案
本文探讨了网络流量预测和众包标注领域的高效解决方案。在网络流量预测方面,采用STL和X12-ARIMA方法对SNMP数据进行季节性调整,将流量数据分解为趋势、季节性和不规则成分,并通过修订历史诊断和滑动跨度诊断评估模型稳定性。研究显示基于STL的方法具有更高的预测准确性。在众包标注领域,提出了一种判别方法,通过将任务和标注者映射到低维空间,更准确地推断真实标签,相比多数投票等传统方法具有更高效率和准确性。研究成果为网络资源分配、大规模数据标注提供了有力支持,并展望了未来跨领域的应用潜力。原创 2025-07-12 13:01:17 · 15 阅读 · 0 评论 -
67、关联搜索与网络流量预测的方法与实践
本文探讨了关联搜索与网络流量预测的方法及实践。在关联搜索部分,提出通过递归扩展术语闭包并结合约束条件高效挖掘推文中的关联概念,并基于Twitter数据进行了实验验证。在网络流量预测部分,分析了周期性和季节性特征,采用统计方法对流量数据进行调整和预测,并对比评估了模型性能。最后,文章总结了研究成果,并展望了未来优化方向及综合应用场景。原创 2025-07-11 12:38:50 · 12 阅读 · 0 评论 -
66、通过桥梁将概念转换为其关联概念
本文介绍了一种基于中介的关联搜索方法,用于在人员和文档的术语关系中将概念转换为其关联概念。该方法通过计算人员的中介水平、利用拉普拉斯特征映射与扩展的k-均值算法进行术语聚类,并结合用户的主观兴趣来提取最大一致概念和条件δ-相似的目标概念,从而实现更精准的信息检索和数据分析。文章详细描述了整个流程的核心步骤、数学模型以及实际应用场景,并展示了其在社交媒体、电子商务和学术研究等领域的应用潜力。原创 2025-07-10 12:51:20 · 10 阅读 · 0 评论 -
65、电影票房预测与概念关联搜索研究
本博客主要探讨了电影票房预测与概念关联搜索的研究方法与实验结果。在电影票房预测部分,比较了逻辑回归和随机森林分类器在不同实验设置下的表现,验证了关联设置和自定义加权方案的有效性。在概念关联搜索部分,重点解决了候选桥梁选择和目标概念选择的问题,并提出利用人-特征关系及中介启发式来构建桥梁概念,最终通过推特数据验证了方法的可行性。研究为电影预测建模和信息检索提供了理论支持和技术方法。原创 2025-07-09 13:39:39 · 13 阅读 · 0 评论 -
64、电影票房预测:基于关联特征与内容特征的综合方法
本文探讨了电影票房预测中基于关联特征与内容特征的综合方法。介绍了内容特征(如预算、时长、明星价值等)和链接特征(如演员、导演、类型、续集关系等)在预测模型中的应用,并通过图网络捕捉电影之间的依赖关系。实验比较了恒定权重、RBF核和自定义加权方案的效果,结果显示考虑电影间依赖关系的关联设置优于独立设置,尤其是在准确率和AUC指标上的提升更为显著。最后,文章展望了未来改进加权方案、处理大规模数据及结合更多特征的方向。原创 2025-07-08 12:27:45 · 19 阅读 · 0 评论 -
63、机器学习在情感分析与电影票房预测中的应用
本文介绍了机器学习在情感分析和电影票房预测两个领域的应用。重点探讨了主题独立情感分析算法TISA,其无需领域信息且具有高准确率与稳定性,并比较了其相较于其他方法的优势。此外,研究还关注了电影票房预测问题,通过构建电影依赖网络并提取网络特征,结合内容特征进行分类预测,显著提高了准确性。文章总结了相关技术的应用成果,并展望了未来发展方向。原创 2025-07-07 13:13:03 · 10 阅读 · 0 评论 -
62、主题独立评分算法(TISA):实现跨领域情感分类的突破
本文介绍了主题独立评分算法(TISA),一种创新的跨领域情感分类方法。TISA通过计算主题独立得分(TIS),将多个主题依赖模型组合成一个主题独立模型,有效解决了传统监督学习方法在跨领域情感分析中的不足。实验结果显示,TISA模型在准确性和稳定性方面均优于传统方法,并能高效挖掘情感特征,揭示用户情感倾向的具体原因。文章还探讨了TISA在电商平台、社交媒体和个人助理等领域的应用前景,并展望了其未来发展方向。原创 2025-07-06 14:11:41 · 12 阅读 · 0 评论 -
61、医学决策与文本分析:信息差距与主题独立算法的应用
本文探讨了信息差距分析在医学决策中的应用以及主题独立评分算法(TISA)在文本分析中的创新。信息差距分析通过量化已知和未知信息之间的差距,提高了医学决策的稳健性,并可在不确定性环境下提供辅助决策支持。而TISA算法通过计算主题独立的类偏置分数,构建了高准确性的主题独立模型,在情感分析中表现出色,解决了现有方法在多领域场景下的局限性。这两种方法分别在医学决策支持系统和文本分析领域提供了创新性的解决方案,具有广泛的应用前景。原创 2025-07-05 12:08:37 · 10 阅读 · 0 评论 -
60、循证医学决策支持系统的信息差距分析
本文探讨了循证医学决策支持系统中的信息差距分析,介绍了循证医学的基本流程及其面临的挑战,提出了基于深度QA系统的需求,重点解析了信息差距的概念及其在医学决策中的应用。通过莱姆病和结节病2的鉴别诊断示例,分析了信息差距模型的三个组成部分以及决策算法对不确定性的鲁棒性。同时,文章还总结了信息差距分析在循证医学中的价值、局限性及未来发展趋势。原创 2025-07-04 16:05:10 · 15 阅读 · 0 评论 -
58、脑电特征选择与半监督支持向量机特征选择算法研究
本博客围绕脑电信号研究和半监督支持向量机特征选择展开,探讨了脑电信号中的特征提取、选择与分类方法,以及基于DC编程和DCA的半监督支持向量机特征选择技术。通过时间序列分析和数学优化模型,研究在不同认知策略下脑电数据的变化,并提出了有效的非凸问题求解方法。实验结果表明,所采用的方法在特征选择和分类性能上具有优势,同时讨论了其在实际应用中的潜力与挑战。原创 2025-07-02 09:20:46 · 13 阅读 · 0 评论 -
57、多分类算法性能对比及EEG特征选择新方法研究
本文研究了多分类算法的性能对比以及一种基于时间序列分类的EEG特征选择新方法。通过在25个多分类数据集上的实验,比较了一对多(OAA)、一对一(OAO)、一次性分类(AAO)及其变体的表现,发现装袋方法显著提升了模型性能。在EEG信号分析中,提出的新方法通过对实验试验的时间序列表示,提供了更详细的特征分析,并在右半球的顶叶和中央电极区域识别出了参考框架差异。文章还讨论了未来的研究方向,包括扩展多分类方法到多标签问题及优化EEG特征选择技术。原创 2025-07-01 12:37:04 · 12 阅读 · 0 评论 -
56、多分类问题的分类方法研究与波兰语自动语音识别优化
本文详细探讨了多分类问题的解决方法,包括一对多(OAA)、一对一(OAO)和一次性分类(AAO)及其变体,并通过实验比较这些方法在不同学习算法上的性能表现。同时,文章还研究了利用词性(POS)N-元语法优化波兰语自动语音识别(ASR)的方法,结果显示简化POS标签和重评分算法能够显著降低单词错误率(WERR)。最后,总结了各种方法的优劣并提出了未来的研究方向。原创 2025-06-30 14:57:31 · 11 阅读 · 0 评论 -
55、使用词性N元语法提升波兰语自动语音识别性能
本文探讨了使用词性N元语法提升波兰语自动语音识别性能的方法。通过引入基于词性的语言模型,并结合声学模型生成的n个最佳候选句子,利用词性标注器计算标签序列的概率,从而对假设进行重新评分和排序。实验结果表明,该方法在降低单词错误率(WERR)和提升正确句子位置(CSPI)方面具有显著效果,尤其以3元语法和5元语法表现最佳。研究还分析了实验资源、重新评分算法及其实现细节,为未来相关研究提供了参考。原创 2025-06-29 11:12:06 · 9 阅读 · 0 评论 -
54、机器学习中的过拟合控制与语言模型优化
本文探讨了机器学习中的过拟合控制方法,特别是基于概率树的懒惰过拟合控制(LOC)及其在不同任务中的应用。通过构建深树并在预测时选择合适的深度,LOC 能够有效避免过拟合问题,并在计算效率和准确性之间取得良好平衡。此外,文章还介绍了语言模型在自动语音识别中的应用,重点分析了基于词性的语言模型如何缓解数据稀疏性问题,特别是在屈折语(如波兰语)处理中的优势。最后,讨论了未来研究方向,包括多方法融合、更复杂的词性分类以及声学模型与语言模型的联合训练等。原创 2025-06-28 14:32:03 · 8 阅读 · 0 评论 -
53、机器学习中的树结构构建与过拟合控制
本文探讨了机器学习中基于树结构的构建方法及其在过拟合控制中的应用。重点分析了决策树和kd树的构建过程,以及最近邻方法存在的问题,包括不能有效泛化、对异常值敏感、维度权重问题和处理缺失数据能力差等缺点。针对这些问题,文章提出了一种新的懒惰过拟合控制(LOC)方法,该方法基于概率模型,在预测阶段根据每个测试用例动态选择合适的泛化级别,从而有效控制过拟合。此外,文中还比较了传统过拟合控制方法(如惩罚、交叉验证和集成方法)与懒惰过拟合控制方法的优劣,并给出了具体的操作步骤和未来研究方向。通过概率方法和LOC的应用,原创 2025-06-27 13:02:53 · 10 阅读 · 0 评论 -
52、分类问题中的机器学习算法与策略
本文探讨了分类问题中常用的机器学习算法与策略,重点分析了通过构建树结构和降低‘无序’来提升分类性能的方法。详细介绍了分支限界策略及其在树搜索中的高效实现——IDA* 算法,并比较了其与线性搜索的效率差异。同时,讨论了基于概率模型(如EM类过程)与非概率模型(如k-均值聚类)的树构建方法,并评估了不同算法在大型随机数据集上的表现。此外,还涵盖了kd-树、最近邻搜索等经典方法,并结合子类数量、数据维度、树深度等因素对算法性能的影响进行了系统分析。最后,提出了未来发展方向,包括算法优化、大数据处理及跨领域应用拓展原创 2025-06-26 12:18:26 · 11 阅读 · 0 评论 -
51、机器学习分类方法:ABCEM与分支限界法的效能提升
本文探讨了两种机器学习分类方法:基于准确性的分类期望最大化(ABCEM)方法和分支限界(Branch-and-Bound)分类方法。ABCEM通过结合聚类与预测,显著降低了均方预测误差(MSPE),在多个数据集上平均改进接近20%。而分支限界法则在处理高类别数量的分类任务时,通过对树结构的下界推导和剪枝操作,大幅提高了搜索效率。文章还分析了两种方法在不同场景下的性能表现,并提出了未来优化方向。原创 2025-06-25 12:34:23 · 7 阅读 · 0 评论 -
50、移动视觉识别与基于准确性的分类 EM 算法研究
本文探讨了移动视觉识别中的图像表示算法比较,以及基于准确性的分类 EM 算法(ABCEM)在数据预测任务中的应用与优化。研究分析了不同算法的原理、性能影响因素,并通过实验验证了 ABCEM 在预测准确性方面的显著优势。同时,文章展望了未来算法优化和跨领域融合的发展方向。原创 2025-06-24 16:47:19 · 8 阅读 · 0 评论 -
49、移动视觉识别的比较研究
本文对移动环境中的视觉识别流程进行了全面的研究和实验评估,重点分析了关键点检测、特征提取和特征编码等环节,并从性能与计算成本两方面比较了多种算法配置。通过优化选择,最终确定SURF - SURF - VLAD组合为性能与效率最佳的方案,可在不到1秒的时间内实现超过31%的mAP性能指标。此外,还探讨了实际应用中的图像分辨率、设备性能及实时性要求等考量因素,并展望了未来研究方向,包括算法改进、硬件支持以及应用场景拓展等。原创 2025-06-23 16:50:51 · 9 阅读 · 0 评论 -
48、个性化专家推荐系统与移动视觉识别研究
本博客主要研究了个性化专家推荐系统与移动视觉识别的相关方法与应用。在推荐系统方面,提出了一种基于支持向量机(SVM)的个性化专家识别方法,通过将专家识别问题转化为SVM优化问题,并结合随机搜索算法标记训练数据,为每个用户识别个性化的专家群体,从而生成更精准的推荐。同时,博客还探讨了移动视觉识别技术,分析了不同的图像表示算法配置,包括关键点检测、特征提取与特征编码,并通过实验评估了不同配置在性能与计算成本上的差异。研究目标是平衡算法的准确性和实时性,以适应移动设备的资源限制。未来的研究方向包括优化SVM模型的原创 2025-06-22 15:04:12 · 8 阅读 · 0 评论 -
47、优化压力检测的时间片段与个性化专家推荐研究
本研究聚焦于优化阅读场景下的压力检测时间片段以及个性化专家推荐系统的构建。通过遗传算法与支持向量机的混合方法,精准识别阅读过程中引发压力的关键时间段,实验表明15-30秒为最佳时间片段,结合特征选择可显著提升识别率。同时,提出了基于SVM的个性化专家推荐框架,能够根据不同用户的需求和偏好,为其推荐最适合的专家群体,从而提供更符合个性化需求的内容。两项研究均以提升用户体验和系统性能为核心目标,展示了在各自领域的应用潜力及未来融合的可能性。原创 2025-06-21 10:26:10 · 8 阅读 · 0 评论 -
46、主题社区发现与压力检测的最优时间片段研究
本文探讨了主题社区发现与压力检测中的最优时间片段研究。在主题社区发现中,LDA方法被应用于企业内部用户行为分析,通过用户-网站类比揭示潜在的兴趣社区,但也面临IP地址变更的挑战。在压力检测方面,基于SVM和遗传算法的混合方法成功识别出关键时间片段,提高了压力识别的准确性和效率。研究还展示了两者的潜在关联及其在市场细分、员工健康管理等领域的应用前景。原创 2025-06-20 15:40:18 · 10 阅读 · 0 评论 -
45、利用网络流量发现主题社区
本文介绍了如何利用网络流量发现主题社区的方法。通过构建用户-网站访问图,并结合从网站提取的关键词语义信息,应用LDA主题模型进行社区检测。该方法不仅能够准确识别与人口统计相关的社区,还能发现基于主题内容的社区,包括预期和意外的主题。实验结果表明,LDA方法在性能上优于K-Means算法,并能够通过关键词对社区进行有效标注和解释。通过分析DHCP日志和网络访问数据,可以深入理解用户的主题兴趣和行为模式。原创 2025-06-19 14:07:25 · 9 阅读 · 0 评论 -
44、不确定数据频繁项集挖掘与主题社区检测
本文探讨了数据挖掘领域的两个重要研究方向:不确定数据频繁项集挖掘和主题社区检测。在不确定数据挖掘方面,重点介绍了U-Apriori和UFP-Growth等算法的应用及挑战,并指出现有研究的局限性。在主题社区检测方面,提出了一种基于LDA的方法,通过分析用户跨网站访问行为来识别潜在的主题驱动社区,并展示了其在真实网络流数据上的实验效果与未来发展方向。原创 2025-06-18 09:06:53 · 9 阅读 · 0 评论 -
43、不确定数据中频繁项集发现的系统综述
本文是一篇关于不确定数据中频繁项集发现的系统综述,涵盖了文献筛选与系统映射、研究趋势、数据库分布、算法分类、数据集使用情况以及未来研究方向等内容。通过对36篇相关文献的详细分析,总结了该领域的研究成果与现存问题,并提出了提高算法可用性、统一数据集标准和拓展研究方法等未来发展方向。原创 2025-06-17 14:01:47 · 6 阅读 · 0 评论 -
42、智能电表数据分析与不确定数据频繁项集挖掘
本博文围绕两个核心主题展开:一是基于技术损耗模型的智能电表数据分析在窃电检测中的应用,通过建立数学模型和实验验证,展示了如何从智能电表采集的数据中识别非技术损耗从而判断窃电行为;二是对不确定数据环境下频繁项集挖掘方法的系统综述,梳理了相关算法、框架及研究趋势,并指出了当前研究的局限性和未来发展方向。两项研究分别在电力数据分析与数据挖掘领域提供了理论支持和技术参考。原创 2025-06-16 10:29:56 · 17 阅读 · 0 评论 -
41、电力系统中的局部放电分析与窃电检测
本文探讨了电力系统中局部放电分析与窃电检测的先进技术。通过聚类分析、对应分析和模糊系统的结合,研究提出了对变压器运行状态进行诊断和预警的有效方法。同时,针对智能电网背景下的窃电问题,提出了一种基于数据驱动的技术损失模型,以提高窃电检测的准确性。综合这些技术,为构建更可靠、安全的电力系统提供了新思路。原创 2025-06-15 13:18:28 · 14 阅读 · 0 评论 -
40、高效可扩展的最大高置信度规则挖掘算法及电力变压器局部放电分析
本博客主要介绍了高效可扩展的最大高置信度规则挖掘算法(MMHCR)及其在微阵列数据集中的应用,同时探讨了电力变压器局部放电分析在电力系统稳定性维护中的作用。MMHCR算法通过优化的树结构和高效的规则生成策略,在计算时间和内存使用方面优于传统方法;而局部放电分析则结合模糊系统为电力变压器的故障诊断与运行监测提供了有效手段。原创 2025-06-14 15:03:23 · 9 阅读 · 0 评论 -
39、高效可扩展的微阵列数据集最大高置信度规则挖掘算法
本文提出了一种高效可扩展的微阵列数据集最大高置信度规则挖掘算法——MMHCR。该算法基于列(基因)枚举方法,通过构建树结构和基因的二进制表示,克服了传统方法中计算时间和内存消耗过大的问题。实验结果表明,MMHCR在执行速度和规则质量方面均优于现有算法如MAXCONF、RERII和CHARM。文章详细介绍了MMHCR的离散化、树构建、规则生成与剪枝等核心步骤,并验证了其在真实微阵列数据集上的优越性能。原创 2025-06-13 13:18:09 · 9 阅读 · 0 评论 -
38、网页数据库自动分类策略
本文探讨了基于领域字典的网页数据库自动分类策略,将网页查询接口(WQI)的字段文本标签用于高效的分类任务。通过自动术语提取、预处理、领域字典生成和术语比较等步骤,该策略在精度、召回率和F-度量值方面表现出色,并优于传统方法。文章还分析了该策略的优势、应用场景及未来发展方向,为信息检索、数据管理等多个领域提供了有效的技术支持。原创 2025-06-12 15:54:44 · 10 阅读 · 0 评论 -
37、利用转折点检测与领域词典的回归树构建及数据库分类研究
本研究围绕基于转折点检测的回归树构建与基于领域词典的Web数据库自动分类展开。在回归树构建方面,提出了TPRTI-A和TPRTI-B两种算法,并通过实验比较其在准确性、模型复杂度和可扩展性方面的表现。实验结果表明,TPRTI算法在多个数据集上具有良好的性能,尤其是TPRTI-B在可扩展性方面优于M5。在Web数据库分类方面,提出了一种基于领域词典的监督分类策略,通过构建领域词典实现对Web查询接口的高效分类。该方法在处理深层网络数据库分类问题上展示了竞争力。原创 2025-06-11 10:06:33 · 10 阅读 · 0 评论 -
36、关系分解理论与基于转折点检测的线性回归树构建
本文探讨了关系分解理论和基于转折点检测的线性回归树构建方法。关系分解理论通过无影响对集与交集属性,提供了数据关系分析的理论基础,并引入无影响系数与置换检验来验证假设。同时,转折点检测被应用于线性回归树诱导,提出了TPRTI-A和TPRTI-B两种新算法,显著提升了可扩展性和预测准确性。文章还比较了不同线性回归树算法,并讨论了这些方法在金融、医疗和工业等领域的应用潜力及未来研究方向。原创 2025-06-10 09:55:07 · 8 阅读 · 0 评论 -
35、关系分解理论详解
本博客详细介绍了关系分解理论,包括关系分解的基础概念、投影和连接操作、无影响关系的定义与性质、因式分解以及不可约性等内容。通过理论阐述与实际案例相结合的方式,帮助读者深入理解如何对关系数据进行有效分解与处理,并探讨了其在数据库设计、数据分析及数据挖掘等领域的应用前景。原创 2025-06-09 12:07:52 · 10 阅读 · 0 评论 -
34、单域表示学习模型在网络流量分类中的应用
本文探讨了单域表示学习模型在网络流量分类中的应用,重点介绍了两种关键方法:单位圆算法(UCA)和单位环机(URM)。文章分析了这两种方法的工作流程及其在入侵检测与正常流量区分任务中的表现。通过NSL-KDD数据集的实验验证,URM技术展现了良好的类别分离能力,并具有可调整性和处理大数据的潜力,但也存在对特征选择依赖性强、部分攻击类型分类准确性不高的问题。未来研究方向包括多域表示学习、知识转移机制以及与HDFS平台结合以提升性能。原创 2025-06-08 12:16:39 · 8 阅读 · 0 评论 -
33、多分类性能评估与网络入侵大数据分类模型
本文探讨了多分类问题中的性能评估指标,并比较了准确性、Kappa统计量、Rk指标、混淆熵、F-度量和Pacc指标的特点及适用场景。研究发现,Pacc指标在区分能力、避免NaN值、与准确性的相关性以及尺度不变性方面表现最佳。此外,文章介绍了一种用于网络入侵大数据分类的单域表示学习模型——单位环机器(URM),该技术利用几何模式进行特征学习,具有类分离目标,适用于处理高体积、高速度的大数据。同时分析了URM的优势与挑战,并展望了未来改进方向。原创 2025-06-07 15:53:39 · 8 阅读 · 0 评论 -
32、Pacc:用于分类结果评估的判别性与准确性相关度量
本文探讨了多类分类问题中准确衡量分类器性能的重要性,并介绍了一些常见的性能度量方法,如混淆熵、Kappa统计量、F-度量和K-类别相关系数。文章提出了一种新的性能度量——概率准确率(Pacc),基于混淆矩阵中正确分类和错误分类的概率差异。通过比较研究发现,传统度量方法在某些情况下存在判别能力弱、取值异常或未定义等问题,而Pacc度量不仅与准确率一致,还具有更强的判别性,适用于各种类型的分类问题。原创 2025-06-06 09:30:17 · 23 阅读 · 0 评论