【机器学习基础】TP,TN,FP,FN,Precision,Recall,PR曲线,AP,MAP,TPR,FPR,ROC曲线,AUC值等的解释

本文详细解释了机器学习中的基本概念,包括TP(真正例)、TN(真负例)、FP(假正例)、FN(假负例)及其在混淆矩阵中的作用。此外,还介绍了PR曲线、AP, MAP的计算方法,以及ROC曲线和AUC值的含义,帮助理解模型性能评估。" 107345194,9043025,Win7下Anaconda安装TensorFlow(CPU版)避坑指南,"['python', 'tensorflow', 'anaconda', '深度学习']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.TP,TN,FP,FN

    下面两个图说的就很明白了吧。左侧有点混淆矩阵的感觉

    P:标签为正样本。

    N:标签为负样本。

    T:预测对了。

    F:预测错了

    TP:正样本被预测为正样本。

    FN:正样本被预测为负样本。 预测错了呗

    FP:负样本被预测为正样本。 预测错了呗

    TN:负样本被预测为负样本。  

  

 

2.PR曲线计算:

2.1 PR曲线画图要知道P是啥  R是啥。

        正样本精确率为:Precision=TP/(TP+FP),表示的是  正样本识别正确总数 / 识别为正样本的样本总数

        正样本召回率为:Recall=TP/(TP+FN),表示的是 正样本识别正确总数 / 正样本的样本总数

   &

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值