目录 5 基于激光雷达的高铁周界入侵监测方法研究 5.1 高铁周界入侵激光雷达监测方法分析 5.2 基于PV-RCNN高铁周界入侵目标检测方法 5.2.1 算法框架 5.2.5 损失函数 5.3 基于改进PV-RCNN的高铁周界入侵目标检测方法 5.3.1 样本增强 5.3.2 基于自适应可变形卷积的前景特征提取 5.3.3 基于K-means的anchor确定 5.4 高铁周界入侵三维点云样本库构建 5.4.1 三维点云样本库基本框架 5.4.2 样本采集 5.4.3 样本标注 5.5 实验设计与结果分析 5.5.1 实验环境与参数设置 5.5.2 评价指标 5.5.3 实验结果与分析 6 基于多传感器融合的高铁周界入侵监测方法研究 6.1 高铁周界入侵多传感器融合监测方法分析 6.2 基于多传感器融的高铁周界入侵目标检测方法 6.2.1 融合算法设计 6.2.2 融合张量构建 6.2.3 融合网络构建 6.2.4 损失函数 6.3 高铁周界入侵多传感器样本库构建 6.3.1 多传感器样本库基本框架 6.3.2 样本采集 6.3.3 时空同步 6.3.4 样本标注 6.4 实验设计与结果分析 6.4.1 实验环境与参数设置 6.4.2 实验结果与分析 知识拓展 基于YOLOv7的高铁周界入侵监测 代码说明: 关键技术实现: 本文篇幅较长,分为上中下三篇,文章索引详见: 基于深度学习的高铁周界入侵监测 基于深度学习的高铁周界入侵监测(中)<