目录
前言
点云(Point Cloud):就是用很多“点”来表示一个物体或场景的三维形状和结构。(用点描绘的3D画,好比素描,但不是用线条勾勒,而是“点点点点”拼出物体形状)
观察这幅图像,你可以注意到以下几点:
由“点”构成:整个场景,无论是车辆、建筑还是树木,都不是由连续的面构成的,而是由大量离散的点组成的。每个点代表了激光雷达扫描到的一个真实世界中的位置。
三维立体感:尽管是2D图像,但你可以清晰地感知到场景的深度和物体的三维形状。这是因为每个点都记录了精确的 (X, Y, Z) 空间坐标。
密度变化:离LiDAR传感器近的物体或者表面积大的物体,其点云密度通常会更高,看起来更“实”一些。远处的物体或者细节少的物体,点云可能相对稀疏。
轮廓和形状:通过点的分布,我们可以清晰地辨认出不同物体的轮廓和大致形状。自动驾驶系统正是通过分析这些点的集合来识别和理解周围环境的。
(可能的)强度/颜色信息:有些点云图像还会用颜色或亮度来表示点的反射强度或其他属性。例如,路面、车身、树叶对激光的反射特性