wince驱动开发-----------概念介绍(一)

本文介绍了Windows CE操作系统中的设备驱动程序架构,包括驱动程序的基本概念、类型如内建驱动和可安装驱动,以及分层驱动的设计原理。此外,还详细讲解了设备管理器的工作流程及其在启动过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         1.驱动程序是一个抽象物理设备或虚拟设备的功能软件,驱动程序管理这些设备的操作。

         2.内建驱动程序和可安装启动程序

                 wince的设备驱动程序是用户模式的DLL,或者是作为目标文件被静态连接到操作系统。

                (1)内建的驱动程序(Built-in Driver)也称本地设备驱动程序(Native Device Driver),被静态链接到GWES,即这些驱动程序不是作为一个单独的DLL存在的。

                (2)可安装的驱动程序(Installable Driver)也成流设备驱动程序(Steams Device Driver),由设备管理器(device.exe)动态加载的用户模式的DLL。

         3.分层驱动程序和不分层的驱动程序

                 (1)分层驱动程序(Layered Device Driver)将驱动程序代码分为模型驱动(Model Device Driver ,MDD)的上层和平台相关驱动(Platform Development Driver,PDD)的下层。MDD层包含给定类型所有驱动程序都共用的代码,而PDD层是由特定于给定硬件设备或平台的代码组成的。MDD层调用PDD层的函数来访问硬件或硬件特定的信息。通常MDD层代码是由微软提供的。开发者只需编写特定于硬件平台的PDD层代码,而直接使用MDD层共用代码。开发者将一例驱动导入一个新的硬件平台时,只需要导入PDD层,而直接使用例驱动的MDD层。

                 分层驱动会导致在驱动程序操作时增加附加功能的调用,这无疑会降低驱动程序的效率,对于时间或性能关键的实时操作,不分层的驱动将更合适。

                  MDD层主要完成的任务:链接PDD层并定义它们所期望的函数;导出DDI函数给操作系统;处理中断这样的复杂任务。

         4.设备管理器:是一个在启动阶段有内核加载并运行的用户进程,它被实现为device.exe.

                 主要完成一下任务:(1)探测用户是否在基于wince的平台接入了一个外围设备,并设法加载这个外围设备驱动。

                                                     (2)在内核中注册特定的文件名,将有应用程序使用的文件I/O函数映射为流接口驱动内对应的函数实现。

                                                     (3)通过从外围设备获得一个即插即用标示符找到对应的外围设备驱动或者通过或条用一个探测程序来找到能够处理这个设备的一个驱动。

                                                     (4)通过读写注册表加载和跟踪驱动程序。

                                                     (5)当不在需要某个设备时卸载他们的驱动。

                                                     (6)跟踪启动阶段。

                    当设备管理器被加载和启动时,它加载资源管理器来从注册表中地区可用资源列表。

                   总线枚举器也被从设备管理器的进程空间内加载,总线枚举器接着调用总线驱动来列举系统活动总线上上挂接的设备并加载总线上设备的驱动。 

                  注:对于不是设备驱动的Web服务和所有其他服务推荐由Service.exe来加载运行。

                                   

        

   

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备定编程基础,特别是对时间序列预测和深度学习有定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值