VirtualCopy和VirtualAlloc

本文详细解释了WinCE系统中VirtualAlloc与VirtualCopy的功能及其实现原理,并对比了动态虚拟内存映射与静态虚拟内存映射的区别。前者通过预留虚拟地址空间并在需要时通过VirtualCopy映射到物理内存,而后者则是静态建立虚拟到物理内存的映射关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VirtualCopy和VirtualAlloc这2个函数的实现和目的,以及wince下动态虚拟内存映射和静态虚拟内存映射
先说VirtualAlloc 和VirtualCopy
VirtualAlloc 首先会从我们的虚拟地址空间中申请(或者说预留)一块虚拟空间,准备接下来要用它。注意此时,可用的物理内存并没有减少,只是虚拟地址少了一块可用的区域。
真正把这块之前reserved的虚拟空间映射到物理的内存区域就是由VirtualCopy来干的,此时,MMU的页表就会增加一个entry,来表示物理--虚拟的映射关系。


再说动态虚拟内存映射和静态虚拟内存映射
OEMaddressTable只是建立了一个一级的静态虚拟--物理的映射关系,一般给kernel(NK.EXE)通过直接访问的形式来用(OALPAtoVA);
MmMapIOSpace(VirtualAlloc +VirtualCopy)是一种动态虚拟映射的手段,一般给驱动根据当前需要(对硬件操作)动态申请并建立映射。

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力GRU的时序信息处理能力,提升时间序列预测的精度效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练验证过程,以及SSA的种群初始化、迭代更新策略适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测深度学习有一定了解的研究人员技术开发者。; 使用场景及目标:①提高时间序列预测的精度效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSAGRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值