非侵入式负荷识别技术:原理、方法与应用
1. 引言
非侵入式负荷识别技术通过收集数据和信息,借助大数据资源共享、分析和挖掘平台,引导用户实现多元化、合理化用电。近年来,众多国际学者投身于非侵入式负荷识别算法的研究。为准确、有效地对复杂负荷的电力负荷信息进行分类,需要运用智能设备识别技术。经过多年技术发展,智能设备识别总结出几个关键步骤,包括事件检测模块、特征提取模块和设备识别模块。整体技术流程如下:
graph LR
A[数据采集] --> B[事件检测]
B --> C[特征提取]
C --> D[负荷识别]
2. 数据采集模块
非侵入式负荷监测(NILM)的本质是负荷分解,即通过入口检测设备获取用户的总负荷电气信息,再将总负荷信息分解到每个电气设备,使用户了解各设备的能耗、使用频率、启停时间等用电信息。这些用电信息具有很高的应用价值,是智能电网发展的支柱,能为社会带来诸多益处。
数据采集是非侵入式负荷监测和分解的第一步,目的是获取用户总负荷的暂态和稳态信号。测量误差不可避免,但应尽量减小。测量误差主要来自两方面:
- 测量设备不统一,对同一电器使用不同测量设备收集信息,导致结果标准不一致。
- 传感器收集的数据因压缩和传输过程中的不当操作而缺失。
非侵入式负荷监测与分解(NILMD)设备可测量住宅负荷的电流、电压等电气物理量,这些数据可视为携带电力信息的信号,包含各种不同特征的负荷成分信息。通过对这些数据进行相应计算、特征提取和分类,NILMD系统可实现负荷分解功能。 <