5、智能设备识别技术:策略与应用解析

智能设备识别技术:策略与应用解析

1. 智能设备识别技术概述

智能设备识别技术在如今的科技发展中扮演着至关重要的角色,尤其是在泛在电力物联网(UEIOT)的背景下,它为能源消耗信息管理提供了可靠保障。通过智能设备识别技术,可以对大量涌入网络空间的设备进行准确感知,实现电器运行状态的独立识别和能源消耗管理,从而制定个性化干预策略,引导用户更合理地用电。

在智能设备识别技术中,主要有监督学习和无监督学习两种方式。监督学习中,如使用人工神经网络(ANN)进行负荷识别,结合粒子群优化(PSO)算法搜索最优的 ANN 参数,在实际住宅数据测试中可获得超过 90% 的准确率。而无监督学习算法不需要标签进行模型训练,直接从数据中挖掘特征的相似性。例如,K - means 和基于密度的空间聚类应用与噪声(DBSCAN)等聚类方法可用于提取负荷特征和识别设备。一些研究还将负荷分解视为盲信号分离问题,通过嵌入领域知识来提高分解性能。不过,无监督算法的准确率通常低于监督算法,但可以通过集成学习方法或多标签分类算法来提高其准确率和泛化性能。

2. 智能设备识别的不同策略

经过多年的技术创新和发展,智能设备识别技术衍生出了多种不同的策略,主要包括聚类策略、优化策略、集成策略和深度学习策略。

2.1 聚类策略

聚类策略是一种典型的无监督算法,其基本功能是根据数据点的内在相似性将给定数据集划分为同质组。当 Hart 教授首次提出非侵入式负荷监测(NILM)概念时,就使用了聚类方法在 P - Q 平面上识别电点。负荷聚类的研究工作主要包括确定聚类数量、分析和评估聚类性能、选择质心的初始值以及确保算法的有效收敛。一般来说,有直接和间接两种聚类方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值