7、智能非侵入式设备识别方法与实验分析

智能非侵入式设备识别方法及优化算法分析

智能非侵入式设备识别方法与实验分析

1. 基于DTW算法的设备识别

时间序列数据是数据存在的经典方式,计算时间序列之间的相似度是数据挖掘中的重要任务,特别是非等长序列的相似度计算。DTW(Dynamic Time Warping)算法是一种动态规划算法,用于计算两个时间序列的相似度,尤其适用于不同长度的序列,常用于语音识别、手势识别、数据挖掘和信息检索等领域。

1.1 DTW算法的基本思想

基于不同电气设备的时间序列信息,DTW算法通过计算特征向量之间的相似度差异来实现设备分类,如欧几里得距离和马尔可夫距离。这里采用卡方检验作为DTW算法的核心方法来构建分类模型。

在设备识别过程中,DTW算法通过计算点对基距离和的最小值来实现设备识别,其距离计算公式如下:
$DTW(X, Y) = min\left{\sum_{K = 1}^{K} D_{base}(w_k)\right}$

通过构建累积距离矩阵实现最优路径选择,矩阵$M$中的元素$\gamma_{i,j}$计算公式为:
$W_{i,j} = D_{base}(x_i, y_j) + min\left{W_{i,j - 1}, W_{i - 1,j}, W_{i - 1,j - 1}\right}$
其中,$W_{i,j}$是序列$X[1:j]$和序列$Y[1:j]$之间的DTW距离。

DTW算法的步骤如下:
1. 使用功率采集设备收集不同设备的功率时序数据。
2. 根据收集的数据建立设备模板库。
3. 将模板库中的数据与测试样本的数据进行比较,基于DTW原理计算相似度距离。
4. 比较相似度计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值