10、智能设备识别:多模型与多特征的融合探索

智能设备识别:多模型与多特征的融合探索

在当今的科技领域,设备识别技术在非侵入式负荷监测和电力物联网中扮演着至关重要的角色。为了实现更精准、高效的设备识别,研究人员不断探索和应用各种模型与特征,下面将详细介绍几种常见的设备识别方法及其性能评估。

基于极限学习机(ELM)的设备识别方法

极限学习机是一种新兴的机器学习方法,在设备识别领域展现出了独特的优势。

不同特征下支持向量机(SVM)的分类结果

为了对比不同特征对设备识别的影响,首先来看SVM在物理特征、谐波特征和小波包分解(WPD)特征下的分类结果,如下表所示:
| Appliance | Physical features | | | Harmonic features | | | WPD features | | |
| — | — | — | — | — | — | — | — | — | — |
| | P | R | F1 - score | P | R | F1 - score | P | R | F1 - score |
| Drill | 1 | 1 | 1 | 0.685 | 0.667 | 0.676 | NaN | 0 | NaN |
| Fan | 1 | 1 | 1 | 0.889 | 0.667 | 0.762 | 1 | 1 | 1 |
| Grinder | 1 | 1 | 1 | 1 | 1 | 1 | NaN | 0 | NaN |
| Hair dryer | 1 | 1 | 1 | 1 | 1 | 1 | NaN | 0 | NaN |
| Hedge trimmer | 1 | 0.