犯罪网络研究:现状、理论与应用
1. 犯罪网络数据收集的挑战
犯罪网络研究在数据收集方面面临诸多挑战。
- 开源材料的局限 :开源材料虽然更易获取,但需要大量的编码和组织工作。而且,它存在与“法院犯罪学”不同形式的偏差。例如,记者和档案管理员对重要人物、报道内容和记录的选择会影响数据的完整性。研究表明,开源编码在处理较大犯罪集团时数据更完整,而对较小犯罪集团的覆盖不足。同时,对臭名昭著的个人存在“聚光灯效应”,如Sageman关于全球萨拉菲圣战组织的数据库偏向于调查中被捕的领导人和成员,对芝加哥历史上有组织犯罪的研究也偏向于处于调查焦点的阿尔·卡彭及其高级助手。
- 暗网问题 :社会网络中的隐藏群体即“暗网”,其成员会隐藏身份和活动,导致局外人甚至内部人都难以知晓网络的全貌。分析暗网时,数据在个体层面或关系层面都可能不完整,这会导致对观察到的网络分析结果往往被低估,且在建模时可能产生不稳定的预测。
挑战类型 | 具体表现 |
---|---|
开源材料局限 | 编码组织工作多、存在选择偏差、“聚光灯效应” |
暗网问题 | 数据不完整、分析结果低估、建模预测不稳定 |
2. 数据来源与创新研究方法
目前用于犯罪网络研究的数据来源并非专门为社会网络分析(SNA)