17、无约束与约束优化问题的求解方法

无约束与约束优化问题的求解方法

1. 拟牛顿法

1.1 纯牛顿法的问题

纯牛顿法在求解无约束最小化问题时,需要在第 $k$ 次迭代中计算海森矩阵的逆来确定搜索方向 $p(k)$。当海森矩阵病态时,得到的搜索方向会不准确,迭代过程可能失败。

1.2 拟牛顿法的基本思想

拟牛顿法不直接求海森矩阵的逆,而是在不同迭代中寻找海森矩阵的近似。用正定矩阵 $B(k)$ 代替 $(H(k))^{-1}$,第 $k$ 次迭代的搜索方向为 $p(k) = -B(k)g(k)$,通常从 $B(0) = I$($I$ 是 $n×n$ 的单位矩阵)开始。不同的拟牛顿法在更新矩阵 $B(k)$ 的方式上有所不同,从而计算搜索方向。最著名的拟牛顿法有 Davidon - Fletcher - Powell(DFP)和 Broyden - Flethcher - Goldfarb - Shanno(BFGS)方法。

1.3 BFGS 方法

1.3.1 算法步骤
  1. 初始近似海森矩阵 $H(0) \approx I$。
  2. 在第 $k$ 次迭代,已知 $x(k)$、$g(k) = g(x(k))$ 和 $H(k)$:
    • 求解线性系统 $H(k)p(k) = -g(k)$ 得到搜索方向 $p(k)$。
    • 通过线搜索算法得到步长 $\alpha(k)$。
    • 计算两个向量:$s(k) = \alpha(k)p(k)$ 和 $y(k) = g(x(k) + s(k)) - g(x(k))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值