gin88
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
24、非侵入式识别技术在多领域的应用探索
本文探讨了非侵入式识别技术在多个领域的应用,包括环境污染监测、工业园区污染源识别、变电站与分布式能源管理、工业生产问题监测、老年人健康服务以及语音质量测量。文章详细介绍了非侵入式技术如何通过空间插值算法、NILM算法、传感器技术及人工智能算法等手段,实现对空气污染的时空分布预测、污染源的智能识别、能源负载分解、液体浓度和气水界面检测、老年人活动监测以及语音质量评估。随着人工智能的发展,非侵入式识别技术正逐步提升人们的生活质量和环境管理水平。原创 2025-08-05 00:26:41 · 21 阅读 · 0 评论 -
23、复杂机电系统应用探索
本文探讨了复杂机电系统在工业生产和船舶领域中的重要性及其面临的挑战。重点分析了电机故障检测与能源管理的现有技术不足,并介绍了基于LabVIEW的非侵入式异步电机转子故障检测方法及电机效率在线监测装置。同时,针对船舶机电系统,提出了非侵入式负载监测技术以提升运行效率和降低维护成本。最后,展望了未来复杂机电系统在故障诊断和能源管理方面的发展趋势。原创 2025-08-04 09:08:40 · 16 阅读 · 0 评论 -
22、智能设备识别在工业中的潜在应用
本文探讨了智能设备识别技术在工业中的潜在应用,包括家庭能源管理、用户电力线路故障判别以及复杂机电系统等多个领域。通过非侵入式负载识别算法,可以实现对家庭用电设备的精细化管理,优化用电成本并提高能源效率。同时,智能设备识别技术还可用于电气设备故障检测和用户电力线路短路事故的精准判别,保障用电安全。在复杂机电系统中,该技术还可支持状态监测和故障诊断,提高设备运行的可靠性和智能化水平。随着人工智能、物联网和多传感器融合技术的发展,智能设备识别将在工业中发挥更重要的作用。原创 2025-08-03 10:05:38 · 15 阅读 · 0 评论 -
21、智能设备识别技术的实验分析与工业应用前景
本文探讨了多种智能设备识别模型(如RNN、LSTM、GRU、CNN、AlexNet和GoogLeNet)的实验结果与性能差异,并分析了它们在工业领域的广泛应用前景。重点包括电力系统监测、复杂机电系统故障诊断以及环境污染治理等方面的应用。同时,讨论了模型精度与效率平衡、数据质量与硬件成本等挑战及应对策略,展望了智能设备识别技术在未来算法创新、多模态融合和物联网融合等方面的发展趋势。原创 2025-08-02 16:01:06 · 13 阅读 · 0 评论 -
20、智能非侵入式设备识别的深度学习方法
本文详细介绍了基于GRU网络、CNN、AlexNet和GoogLeNet的非侵入式设备识别方法,并对基于负载序列和图处理的设备识别实验进行了全面分析。通过对比不同模型在准确率、召回率、精确率和F1分数等方面的表现,探讨了其适用场景及优化方向。文章旨在为从事非侵入式设备识别领域的研究人员和工程师提供有价值的参考,推动该领域的技术发展和应用。原创 2025-08-01 11:13:25 · 21 阅读 · 0 评论 -
19、智能非侵入式设备识别技术:集成学习与深度学习方法解析
本文探讨了智能非侵入式设备识别技术,重点分析了集成学习和深度学习方法在设备识别中的应用。通过比较AdaBoost、LPBoost和MOGWO等集成模型的性能,发现AdaBoost-tree模型具有最优的总体分类效果。此外,还介绍了基于RNN和LSTM的深度学习方法,在处理时间序列数据方面表现出更高的准确率。文章总结了两种方法的优缺点,并提出了实际应用的操作步骤与未来发展趋势,包括多模态数据融合、强化学习和边缘计算等方向,同时指出了数据隐私与模型可解释性等挑战及应对策略。原创 2025-07-31 10:00:29 · 15 阅读 · 0 评论 -
18、智能非侵入式设备识别的集成方法研究
本文探讨了两种智能非侵入式设备识别的集成方法:优化加权策略和提升策略。通过多种优化算法对基分类器进行加权组合,优化模型分类性能;同时基于AdaBoost和LPBoost的提升策略,利用弱分类器集成实现高效设备识别。研究对比了不同策略的模型性能、特征重要性和应用场景,并提出了实际应用建议和未来发展方向,为设备识别领域的研究和实践提供了参考。原创 2025-07-30 11:58:59 · 17 阅读 · 0 评论 -
17、智能非侵入式设备识别与集成方法解析
本文探讨了智能非侵入式设备识别中的多目标优化方法和集成学习策略。通过比较遍历搜索、NSGA-II、MOPSO 和 MOGWO 等优化方法,发现 MOGWO 在识别精度和适应电流波动方面表现最佳。同时,基于优化加权策略的集成方法(如使用 MOGWO、GWO 等优化算法)能够有效结合多个基础分类器,显著提升设备识别的准确性和鲁棒性。实验还表明,优化加权策略优于 Boosting 方法(如 AdaBoost 和 LPBoost)。最后,文章提出了未来研究方向,包括改进特征提取、融合多模态数据以及优化算法在大规模数原创 2025-07-29 10:59:44 · 19 阅读 · 0 评论 -
16、智能非侵入式设备识别方法解析
本文详细介绍了基于NSGA-II、MOPSO和MOGWO的智能非侵入式设备识别方法,通过定义目标函数和评估指标,对比分析三种多目标优化算法与遍历搜索方法在设备识别中的性能。文章涵盖理论基础、模型框架、实验评估及实际应用建议,并展望了未来发展趋势。原创 2025-07-28 10:19:38 · 19 阅读 · 0 评论 -
15、智能非侵入式设备识别技术解析
本文详细解析了智能非侵入式设备识别技术,重点分析了FGKM和DBSCAN聚类算法在设备识别中的性能,并与传统k-均值算法进行了对比。通过COOLL数据集和PCA特征融合,评估了不同聚类方法的纯度、熵、NMI和RI等指标,确定了DBSCAN的最优参数配置。此外,文章还探讨了基于机器学习和数学优化的智能方法,特别是在稳态电流分解中的应用,介绍了多目标优化算法如NSGA-II、MOPSO和MOGWO的潜力。数据处理方面,采用了频率标准化和数据扩展策略,提升了数据质量。特征提取部分引入了加权谐波向量,提高了识别精度原创 2025-07-27 14:59:34 · 16 阅读 · 0 评论 -
14、智能非侵入式设备识别的聚类方法研究
本文探讨了快速全局K均值(FGKM)聚类和基于密度的空间聚类与噪声应用(DBSCAN)在智能非侵入式设备识别中的应用。通过使用COOLL数据集并进行数据预处理和PCA特征降维,研究了不同聚类方法的性能,并比较了FGKM和DBSCAN在设备识别中的优劣。研究发现FGKM在合理选择聚类数时表现良好,而DBSCAN由于电器样本特征差异较大效果不佳。未来方向包括特征工程优化、参数选择改进和集成方法探索。原创 2025-07-26 12:39:42 · 16 阅读 · 0 评论 -
13、智能非侵入式设备识别方法研究
本文围绕智能非侵入式设备识别方法展开研究,重点探讨了多标签分类模型MLKNN和BPMLL的性能评估与比较,以及聚类方法FGKM和DBSCAN在设备识别中的应用。通过实验分析,三种多标签分类模型(MLKNN、BPMLL和Ranking SVM)在不同评估指标上表现各有优劣,均能满足实际应用需求。此外,聚类方法在处理海量负载数据方面展现出良好潜力,DBSCAN在聚类有效性指标上优于FGKM。文章最后提出了未来研究方向,包括提高特定设备识别精度、优化聚类算法以及融合多种技术以进一步提升设备识别效果。原创 2025-07-25 10:53:00 · 13 阅读 · 0 评论 -
12、智能设备识别方法:基于排序支持向量机与多标签K近邻算法
本文探讨了两种智能设备识别方法:基于排序支持向量机(Ranking SVM)和多标签K近邻算法(MLKNN)。通过在REDD数据集上的实验,分析了不同核函数对Ranking SVM性能的影响,并评估了MLKNN在多标签分类问题上的适用性。文章详细介绍了多标签分类的评估指标,并对两种方法的性能、计算资源需求及适用场景进行了对比分析。最终,提出了根据数据特征选择合适方法的实际应用建议,为非侵入式设备识别在智能电网和智能家居领域的应用提供了理论支持和技术参考。原创 2025-07-24 09:51:35 · 13 阅读 · 0 评论 -
11、基于排序支持向量机的设备识别方法
本博客介绍了一种基于排序支持向量机的多标签设备识别方法,利用REDD数据集进行实验。通过对主电路信号的标注、电气特征和谐波特征的提取与融合,以及使用PCA进行特征降维,构建了排序支持向量机模型。文章还探讨了线性与非线性排序SVM的基本理论,并分析了不同核函数的选择对模型性能的影响。该方法为智能设备的非侵入式识别提供了一种高效且准确的解决方案。原创 2025-07-23 14:57:00 · 15 阅读 · 0 评论 -
10、智能设备识别:多模型与多特征的融合探索
本文探讨了在非侵入式负荷监测和电力物联网背景下,智能设备识别技术的研究进展。通过对比极限学习机(ELM)、支持向量机(SVM)和多层感知机(MLP)等单标签分类模型在物理特征、谐波特征和小波包分解(WPD)特征下的识别性能,分析了不同模型与特征的适用性。同时,文章还介绍了Ranking SVM、MLKNN和BPMLL等多标签分类模型在设备识别中的应用,并评估了它们在REDD数据集上的表现。最后,文章展望了未来设备识别技术的发展方向,包括模型融合、特征工程优化和实时识别等。原创 2025-07-22 11:27:41 · 15 阅读 · 0 评论 -
9、基于智能单标签分类方法的智能非侵入式设备识别
本文探讨了基于智能单标签分类方法的智能非侵入式设备识别技术,重点研究了在非侵入式负荷监测(NILM)领域的应用。通过使用COOLL公共数据集,评估了基于支持向量机(SVM)、极限学习机(ELM)和人工神经网络(ANN)的设备识别模型性能。文章详细介绍了特征提取方法(包括物理特征、谐波特征和小波包分解特征)以及不同分类器的建模过程,比较了各类方法在设备识别中的优劣,总结了物理特征在多数分类任务中的优势,并指出部分设备识别的难点。最后,文章提出了针对特征选择、分类器应用和困难设备识别的建议,为电力系统物联网的发原创 2025-07-21 15:38:17 · 13 阅读 · 0 评论 -
8、设备识别中分类算法的性能分析与优化
本文围绕设备识别中的分类算法展开,分析了决策树、KNN和DTW等算法的分类性能,并通过启发式算法优化模型参数。实验结果表明,CART算法和ICA优化的KNN算法在设备识别中表现优异,同时强调了K值选择与数据特征处理的重要性。文章为设备识别的实际应用提供了技术参考与优化方向。原创 2025-07-20 12:54:32 · 12 阅读 · 0 评论 -
7、智能非侵入式设备识别方法与实验分析
本文探讨了智能非侵入式设备识别的多种方法,包括基于动态时间规整(DTW)算法的设备识别和基于电流分解的设备识别方法,并分析了DTW算法在设备识别中的局限性。文章还介绍了电流分解的物理特征及其在设备识别中的应用潜力。为了提升分类模型的准确性,研究采用遗传算法(GA)和帝国竞争算法(ICA)优化决策树和KNN模型的参数,并通过实验验证了优化算法在设备识别中的有效性。结果表明,GA和ICA显著提高了分类模型的准确率、召回率和F1分数,为智能设备识别提供了新的思路和技术支持。原创 2025-07-19 12:24:18 · 14 阅读 · 0 评论 -
6、基于物理方法的智能非侵入式设备识别
本博客主要探讨基于物理方法的智能非侵入式设备识别技术,重点分析基于决策树和KNN(K近邻)算法的设备分类方法。通过提取电压、电流等原始数据的物理特征,如功率、阻抗、谐波等,结合PLAID数据集对五种常见电器进行识别。文中比较了ID3、C4.5和CART三种决策树算法的分类效果,并深入探讨了KNN在设备识别中的应用及其参数优化。实验结果表明,CART和KNN均表现出较高的分类准确率,为非侵入式负载识别提供了有效的技术路径。原创 2025-07-18 16:49:07 · 13 阅读 · 0 评论 -
5、智能设备识别技术:策略与应用解析
本文详细解析了智能设备识别技术及其在泛在电力物联网(UEIOT)中的应用。文章首先介绍了智能设备识别技术的基本概念,包括监督学习和无监督学习的应用;接着探讨了聚类、优化、集成和深度学习等不同识别策略,分析了它们的优缺点和实际应用;随后阐述了智能设备识别技术在 UEIOT 四层架构中的具体体现;最后对未来技术发展方向进行了展望,包括多策略融合、跨领域应用拓展、数据安全与隐私保护以及实时性和效率提升等方面。文章旨在为智能电网和 UEIOT 的发展提供理论支持和技术参考。原创 2025-07-17 13:54:25 · 16 阅读 · 0 评论 -
4、非侵入式负荷识别技术:原理、方法与应用
本文介绍了非侵入式负荷识别技术的原理、方法与应用。该技术通过数据采集、事件检测、特征提取和负荷识别等步骤,实现对电力负荷的准确分解和识别,有助于用户多元化、合理化用电,推动智能电网和能源管理的发展。文章详细阐述了各个技术模块的实现方法,包括事件检测中的专家启发式、概率模型和模板匹配方法,特征提取的稳态、暂态和非传统特征,以及负荷识别中的组合优化和模式识别方法。同时,文章还探讨了技术面临的挑战和未来发展方向。原创 2025-07-16 16:49:38 · 19 阅读 · 0 评论 -
3、泛在电力物联网关键技术与智能设备识别解析
本文详细解析了泛在电力物联网的关键技术,包括云平台、计算智能、智能模型嵌入、智能芯片、5G和LPWA等,探讨了它们在电网智能化运行中的作用与应用。同时,文章分析了智能设备识别技术的重要性,并对泛在电力物联网的发展趋势与挑战进行了深入讨论,提出了应对策略。通过这些技术的协同应用,电力行业将向智能化、高效化和可持续化方向发展。原创 2025-07-15 14:28:47 · 14 阅读 · 0 评论 -
2、泛在电力物联网(UEIOT):技术与应用的全面解析
本文全面解析了泛在电力物联网(UEIOT)的技术架构与应用场景。UEIOT作为能源互联网的重要基础,通过全息感知层、泛在网络层、共享平台层和多应用层的体系设计,为电网安全运行、清洁能源消纳和综合能源服务提供了强有力的支持。文章深入探讨了智能电力设备识别、物联网、大数据分析、云平台、计算智能和智能模型嵌入等关键技术,并分析了其在电力系统中的具体作用。此外,还展望了泛在电力物联网的未来发展趋势,包括与区块链、5G等新兴技术的融合。整体而言,UEIOT将推动电力系统的智能化、高效化和可持续发展。原创 2025-07-14 14:43:55 · 23 阅读 · 0 评论