基于YOLOv5的无人机图像绝缘子故障检测
1. 背景与问题提出
在高压输电线路的智能检测中,绝缘子缺陷识别是重要目标之一。绝缘子为输电线路提供机械支撑和电气绝缘,对电网的安全可靠运行至关重要。然而,由于雷击、材料老化和过载等因素,绝缘子在运行一段时间后容易出现缺陷。传统的人工检测方法效率低下且不实用,因为高压输电线路通常架设在复杂环境中。随着无人机操控和图像处理技术的发展,利用无人机拍摄的航拍照片进行绝缘子状态检测变得越来越流行。
传统的基于人工特征的方法研究了多种特征,如颜色、形状、边缘等,还使用了一些数学模型。基于机器学习的方法则采用AdaBoost、SVM等算法来识别绝缘子位置和问题。但这些方法存在一些问题,如对复杂背景干扰敏感,拍摄距离和角度会影响性能,且大多不适合实时应用。同时,目前缺乏公开的绝缘子航拍图像数据集,现有的算法也缺乏对绝缘子多故障检测的系统分析。
2. YOLO系列模型发展
为了解决两阶段检测算法实时性能差的问题,Redmon等人在2016年提出了单阶段网络YOLOv1。它将目标检测视为回归问题,可直接端到端地提高检测性能。但YOLOv1在物体重叠和遮挡情况下容易漏检,对小物体识别效率低。
2017年,Redmon和Farhadi提出了YOLOv2,它以DarkNet - 19为基础网络,增加了批量归一化预处理、多尺度训练机制和二元交叉熵损失函数,提高了召回率和精度。
2018年,他们又推出了YOLOv3,该方法扩展了网络层数,实现了Resnet中的跨层求和功能,以Darknet - 53为骨干网络,提高了对小物体检测的敏感性,在实际应用中速度快,背景误检率低。