推荐开源项目:GAP Coreference Dataset - 实现自然语言理解的新里程碑

推荐开源项目:GAP Coreference Dataset - 实现自然语言理解的新里程碑

去发现同类优质开源项目:https://gitcode.com/

在自然语言处理领域,核心ference解析是一项至关重要的任务,对于理解文本中的模糊代词尤为关键。然而,现有的数据集在捕捉和解决实际应用中的模糊代词问题时,往往量不足、种类单一。为了解决这个问题,【谷歌AI语言团队】推出了GAP Coreference Dataset,一个从Wikipedia中采样而来的,旨在评估核心ference解析实用性的性别平衡数据集。

项目介绍

GAP数据集包含了8,908个标注了(模糊代词,先行词)对的样本,旨在提供真实世界文本中挑战的多样覆盖。值得注意的是,该数据集特意保持了性别平衡,以解决核心ference系统中观察到的性别偏见问题。GAP的数据发布包括三个.tsv文件,分别为测试、开发和验证三部分,每部分都有相应的角色和用法。

项目技术分析

每个样本由十一列组成,包括文本、代词位置、候选名字及其是否与代词关联等信息。同时提供了两个任务设置,即“snippet-context”和“page-context”,前者不允许使用URL信息,后者则可以利用完整的页面上下文。数据集还附带了一个基于句法平行主义的基准线,供研究者在测试集上比较性能。

应用场景

GAP数据集广泛适用于以下应用场景:

  1. 自然语言理解系统的训练和优化。
  2. 核心ference解析算法的性能评估和改进。
  3. 去除性别偏见的人工智能研究。
  4. 创建更强大、更具普适性的人机交互系统。

项目特点

  • 多样性与挑战性:GAP数据集通过从Wikipedia抽样,提供了涵盖各种复杂情况的真实世界文本样本。
  • 性别平衡:特别关注性别公平,以减少模型的性别偏见。
  • 结构化和易于使用:数据以清晰的.tsv格式提供,便于导入和处理。
  • 基准测试:提供了参考基准线,方便比较不同解决方案的性能。

如果你正在寻找一个能够推动你的自然语言处理模型发展,并帮助消除性别偏见的数据集,那么GAP Coreference Dataset无疑是一个理想的选择。让我们共同探索并提升AI在理解和处理人类语言上的潜力吧!


引用相关论文:

@inproceedings{webster2018gap,
  title =     {Mind the GAP: A Balanced Corpus of Gendered Ambiguous},
  author =    {Webster, Kellie and Recasens, Marta and Axelrod, Vera and Baldridge, Jason},
  booktitle = {Transactions of the ACL},
  year =      {2018},
  pages =     {to appear},
}

有任何疑问或建议,请联系:gap-coreference@google.com

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋海翌Daley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值