黑杰克字典项目使用教程

黑杰克字典项目使用教程

blackJack-Dicts 参考十余个项目整理的目录和文件字典 blackJack-Dicts 项目地址: https://gitcode.com/gh_mirrors/bl/blackJack-Dicts

1. 项目目录结构及介绍

本项目包含了用于Web安全测试的目录和文件字典,其目录结构如下:

  • api/

    • api/per_root_api: 根目录API枚举文件
    • api/api_fuzz: API目录Fuzzing文件
  • asp/

    • asp/asp_dir: ASP指纹识别时调用的目录枚举
    • asp/asp_file: ASP指纹识别时调用的详细枚举
  • aspx/

    • aspx/asp_dir: ASPX指纹识别时调用的目录枚举
    • aspx/asp_file: ASPX指纹识别时调用的详细枚举
  • file/

    • file/per_root_file: 根目录备份文件枚举
    • file/per_dir_file_replace: 子目录备份文件动态枚举
  • java/

    • java/action_dir: Java框架指纹识别时调用的路由枚举
    • java/action_file: Java框架指纹识别时调用的详细枚举
  • jsp/

    • jsp/jsp_dir: JSP指纹识别时调用的目录枚举
    • jsp/jsp_file: JSP指纹识别时调用的详细枚举
  • php/

    • php/php_dir: PHP指纹识别时调用的目录枚举
    • php/php_file: PHP指纹识别时调用的详细枚举
  • LICENSE: 项目使用的Apache-2.0协议许可证文件

  • README.md: 项目说明文件

  • dir.txt: 纯目录字典,约2000条

  • dir_mini.txt: 纯目录字典,更小版本

  • dir_bigger.txt: 集成后的原字典,约25000条

2. 项目的启动文件介绍

本项目没有特定的启动文件。使用时,直接根据需求选择相应的字典文件即可。

3. 项目的配置文件介绍

本项目同样不包含配置文件。所有的字典文件都是文本格式,可以直接编辑或通过脚本生成符合特定需求的字典内容。用户可以根据自己的需求,调整字典中的内容,以适应不同的Web安全测试场景。

blackJack-Dicts 参考十余个项目整理的目录和文件字典 blackJack-Dicts 项目地址: https://gitcode.com/gh_mirrors/bl/blackJack-Dicts

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/606bcce3cac5 在机器学习与深度学习领域,数据集是构建和优化模型的关键基础。本文聚焦于一个名为“黄色车牌数据集(小轿车、大货车)”的资源,该数据集包含约800张黄色车牌图像,涵盖小轿车和大货车等多种车辆类型。黄色车牌在中国大陆主要用于大型车辆,如货车和客车,与蓝色车牌相比,黄色车牌通常代表大吨位或营运车辆,而蓝色车牌则多用于私家车。 数据集中的图像样本与XML文件相结合,XML文件作为结构化数据,记录了图像中车牌的边界框坐标等元数据,为训练目标检测模型提供了重要信息。目标检测模型,例如YOLO、SSD和Faster R-CNN,能够精准定位并识别图像中的车牌区域。深度学习技术,尤其是卷积神经网络(CNN),在车牌识别任务中发挥着核心作用。CNN通过提取图像特征并结合全连接层进行分类,能够有效处理车牌识别任务。此外,预训练模型如VGG、ResNet和Inception经过微调后,可适应特定的车牌识别需求。基于Transformer的DETR等端到端模型也为车牌识别提供了新的解决方案。 在模型训练过程中,数据集通常被划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于调整参数以防止过拟合,测试集则用于评估模型在未知数据上的性能。为了提升模型的泛化能力,数据增强技术如随机翻转、裁剪和旋转图像被广泛应用,以模拟不同的拍摄条件。 黄色车牌识别系统在交通安全、交通监控、车辆追踪和管理等领域具有重要意义。它可用于自动收费、违规行为检测等功能。由于中国各地车牌格式存在差异,模型需要具备足够的适应性,这也要求数据集具有广泛的覆盖范围和多样性。总之,“黄色车牌数据集”为开发高精度车牌识别模型提供了重要资源。结合深度学习技术和目标检测算法,可构建出服务于智能交通系统的高效车牌识别系统。XML文件的解析和利用在训练过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵鹰伟Meadow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值