数据科学入门教程:统计学与概率论基础精要

数据科学入门教程:统计学与概率论基础精要

Data-Science-For-Beginners 10 Weeks, 20 Lessons, Data Science for All! Data-Science-For-Beginners 项目地址: https://gitcode.com/gh_mirrors/da/Data-Science-For-Beginners

引言

统计学与概率论是数据科学的两大数学基石。虽然不深入数学也能处理数据,但掌握基本概念能让你事半功倍。本文将从零开始,带你系统理解数据科学所需的统计概率知识。

概率与随机变量

概率是描述事件发生可能性的数值,范围在0到1之间。计算方法是:有利结果数除以所有可能结果数(假设所有结果等可能)。例如掷骰子得到偶数的概率是3/6=0.5。

我们用随机变量表示随机事件的结果。比如掷骰子的结果可用随机变量X表示,其样本空间为{1,2,3,4,5,6}。随机变量分为:

  • 离散型:可数样本空间(如骰子结果)
  • 连续型:不可数样本空间(如公交车到站时间)

概率分布

离散分布

离散随机变量的概率分布可用函数P(X=s)描述。最著名的离散分布是均匀分布,每个结果的概率相等。

连续分布

连续变量的概率描述更复杂。精确时间点的概率为0,我们只能计算区间概率。连续分布用**概率密度函数p(x)**表示:

概率密度函数

重要连续分布包括:

  • 均匀分布:区间内等概率
  • 正态分布:钟形曲线分布(后文详述)

数据特征描述

集中趋势

  • 均值:所有数据的算术平均
  • 中位数:将数据分为两半的值
  • 众数:出现最频繁的值(适合类别数据)

离散程度

  • 方差:数据与均值距离平方的平均
  • 标准差:方差的平方根

四分位数

  • Q1:25%数据低于此值
  • Q3:75%数据低于此值
  • IQR = Q3-Q1
  • 异常值:超出[Q1-1.5IQR, Q3+1.5IQR]的值

箱线图可直观展示这些统计量:

箱线图示例

正态分布

现实中的许多测量值(如身高、体重)都服从正态分布(高斯分布),其特点:

  • 钟形对称曲线
  • 由均值(μ)和标准差(σ)决定形状
  • 68-95-99.7规则:数据落在μ±σ、μ±2σ、μ±3σ内的概率分别为68%、95%、99.7%

正态分布

置信区间

由于样本不能完全代表总体,我们需要置信区间来估计总体参数。置信区间是一个范围,表示总体参数以特定概率落在此区间内。

计算步骤:

  1. 确定置信水平(如95%)
  2. 查t分布表得临界值
  3. 计算区间:样本均值±临界值×标准误差

示例(棒球运动员体重): | 置信水平 | 体重均值区间 | |----------|--------------| | 85% | 201.73±0.94 | | 90% | 201.73±1.08 | | 95% | 201.73±1.28 |

假设检验

当我们观察到两组数据有差异时(如一垒手比二垒手高),需要验证这是真实差异还是随机误差。基本步骤:

  1. 建立原假设H₀(如"两组身高无差异")
  2. 选择检验方法(如t检验)
  3. 计算检验统计量(如t值)
  4. 比较p值与显著性水平(通常0.05)
    • p<0.05:拒绝H₀,差异显著
    • p≥0.05:无法拒绝H₀

Python实现示例:

from scipy.stats import ttest_ind
tval, pval = ttest_ind(group1, group2)
print(f"t值={tval:.2f}, p值={pval:.4f}")

大数定律与中心极限定理

大数定律

当试验次数趋近无穷时,事件发生的频率趋近其理论概率。

中心极限定理

无论原始分布如何,当样本量足够大时,样本均值的分布趋近正态分布。这是许多统计方法的基础。

实际应用建议

  1. 探索数据时先绘制直方图和箱线图
  2. 比较组间差异时使用适当的假设检验
  3. 报告结果时提供置信区间而不仅是点估计
  4. 注意数据是否符合检验方法的假设条件(如正态性)

掌握这些基础概念,你就能更自信地处理数据科学项目中的统计问题了!

Data-Science-For-Beginners 10 Weeks, 20 Lessons, Data Science for All! Data-Science-For-Beginners 项目地址: https://gitcode.com/gh_mirrors/da/Data-Science-For-Beginners

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵鹰伟Meadow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值