《BakedSDF PyTorch实现》安装与配置指南
1. 项目基础介绍
本项目是基于PyTorch的BakedSDF的开源实现。BakedSDF是一种利用神经网络进行实时视图合成的技术,它通过训练神经网络来表示三维场景,进而能够在不同的视角下实时生成视图。该项目是用Python语言编写的,主要依赖于PyTorch深度学习框架。
2. 关键技术与框架
项目使用的关键技术包括:
- 神经辐射场(Neural Radiance Fields,NERF):一种用于三维场景重建和渲染的技术。
- Meshing:将神经辐射场中的点云转换为网格,以提升渲染效率。
- COLMAP:一种结构从运动(Structure from Motion,SfM)的库,用于从图像中重建三维场景。
项目使用的主要框架和库有:
- PyTorch:用于构建和训练神经网络的深度学习库。
- Tiny-CUDA-NN:一个用于加速点云处理的CUDA神经网络库。
3. 安装与配置
准备工作
在开始安装前,请确保您的系统中已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch(CPU或GPU版本,根据您的需求选择)
- CUDA(如果使用GPU版本)
安装步骤
-
克隆项目到本地目录:
git clone https://github.com/hugoycj/torch-bakedsdf.git cd torch-bakedsdf
-
安装PyTorch和相关的依赖库:
根据您的系统配置和需求,选择以下命令之一安装PyTorch:
# CPU-only pip install torch torchvision # GPU版本(确保CUDA版本与您的系统兼容) pip install torch torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html
-
安装
tiny-cuda-nn
:pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
-
安装项目要求的其它依赖:
pip install -r requirements.txt
-
准备数据集:
如果您有自定义的图像数据集,您需要安装并使用COLMAP来处理图像数据。请按照以下步骤操作:
-
安装COLMAP(具体步骤请参考COLMAP官方文档)。
-
将您的图像放入项目中的
images/
文件夹。 -
运行
scripts/imgs2poses.py
脚本,指定包含图像的文件夹路径:python scripts/imgs2poses.py ./path/to/your/images
-
确保在数据集的同一目录中有
sparse/
文件夹,其中包含COLMAP的输出。
-
-
运行项目:
使用以下命令启动训练过程(请替换
$1
为您的数据集根目录):python launch.py --config configs/neus-colmap.yaml --gpu 0 --train dataset.root_dir=$1
如果您想继续之前的训练,可以添加
--resume_weights_only --resume latest
参数。
通过以上步骤,您应该能够成功安装并配置本项目。接下来,您可以开始训练和测试您的三维场景模型。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考