自驾车项目启动与配置教程

自驾车项目启动与配置教程

Self-Driving-Car- A End to End CNN Model which predicts the steering wheel angle based on the video/image Self-Driving-Car- 项目地址: https://gitcode.com/gh_mirrors/se/Self-Driving-Car-

1. 项目的目录结构及介绍

本项目是基于卷积神经网络(CNN)实现的端到端自驾车项目,项目目录结构如下:

  • logs/: 存储Tensorboard训练日志。
  • .gitignore: 指定Git忽略的文件。
  • LICENSE: 项目使用MIT协议。
  • README.md: 项目说明文件。
  • Self_Driving_Car_Notebook.ipynb: Jupyter Notebook文件,用于代码实验和文档。
  • driving_data.py: 处理驾驶数据的相关代码。
  • model.py: 定义卷积神经网络模型的代码。
  • run.py: 实时运行模型,从摄像头获取图像进行预测。
  • run_dataset.py: 在数据集上运行模型。
  • self_driving_car_gif.gif: 项目演示GIF图。
  • steering_wheel.jpg: 方向盘图片。
  • steering_wheel_image.jpg: 方向盘图像。
  • train.py: 训练模型的脚本。

2. 项目的启动文件介绍

项目的启动主要是通过train.pyrun.py两个文件进行。

  • train.py: 这个脚本用于训练卷积神经网络模型。运行此脚本前,确保已经下载了数据集,并且调整了相应的配置。训练过程中可以使用Tensorboard进行可视化监控。
  • run.py: 此脚本用于在实时摄像头数据上运行训练好的模型,进行实时预测。

3. 项目的配置文件介绍

本项目没有单独的配置文件,但是你需要在代码中手动配置以下内容:

  • 数据集路径:确保driving_data.py中数据集路径正确无误。
  • 模型参数:在model.py中根据需要调整模型的参数。
  • 训练参数:在train.py中设置训练的批次大小、学习率等。

确保所有路径和参数正确配置后,你可以按照以下步骤启动项目:

  1. 运行train.py开始训练模型。
  2. 训练完成后,运行run.py进行实时预测。

以上步骤将帮助你成功启动和配置自驾车项目。

Self-Driving-Car- A End to End CNN Model which predicts the steering wheel angle based on the video/image Self-Driving-Car- 项目地址: https://gitcode.com/gh_mirrors/se/Self-Driving-Car-

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值