自驾车项目启动与配置教程
1. 项目的目录结构及介绍
本项目是基于卷积神经网络(CNN)实现的端到端自驾车项目,项目目录结构如下:
logs/
: 存储Tensorboard训练日志。.gitignore
: 指定Git忽略的文件。LICENSE
: 项目使用MIT协议。README.md
: 项目说明文件。Self_Driving_Car_Notebook.ipynb
: Jupyter Notebook文件,用于代码实验和文档。driving_data.py
: 处理驾驶数据的相关代码。model.py
: 定义卷积神经网络模型的代码。run.py
: 实时运行模型,从摄像头获取图像进行预测。run_dataset.py
: 在数据集上运行模型。self_driving_car_gif.gif
: 项目演示GIF图。steering_wheel.jpg
: 方向盘图片。steering_wheel_image.jpg
: 方向盘图像。train.py
: 训练模型的脚本。
2. 项目的启动文件介绍
项目的启动主要是通过train.py
和run.py
两个文件进行。
train.py
: 这个脚本用于训练卷积神经网络模型。运行此脚本前,确保已经下载了数据集,并且调整了相应的配置。训练过程中可以使用Tensorboard进行可视化监控。run.py
: 此脚本用于在实时摄像头数据上运行训练好的模型,进行实时预测。
3. 项目的配置文件介绍
本项目没有单独的配置文件,但是你需要在代码中手动配置以下内容:
- 数据集路径:确保
driving_data.py
中数据集路径正确无误。 - 模型参数:在
model.py
中根据需要调整模型的参数。 - 训练参数:在
train.py
中设置训练的批次大小、学习率等。
确保所有路径和参数正确配置后,你可以按照以下步骤启动项目:
- 运行
train.py
开始训练模型。 - 训练完成后,运行
run.py
进行实时预测。
以上步骤将帮助你成功启动和配置自驾车项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考