Graphene 2.0 升级指南:Python GraphQL 框架的重大更新

Graphene 2.0 升级指南:Python GraphQL 框架的重大更新

graphene GraphQL framework for Python graphene 项目地址: https://gitcode.com/gh_mirrors/gr/graphene

前言

Graphene 是 Python 生态中广受欢迎的 GraphQL 框架,其 2.0 版本带来了多项重大改进和优化。本文将详细介绍从 1.0 升级到 2.0 版本需要注意的关键变化,帮助开发者顺利完成迁移。

核心改进概述

Graphene 2.0 对类型系统进行了大幅简化:

  1. 移除了 ObjectTypeInterfaceInputObjectTypeScalarEnum 的显式元类需求
  2. 优化了字段解析器的编写方式
  3. 引入了多项新特性

已弃用功能

1. AbstractType 被弃用

在 1.0 版本中,需要使用 AbstractType 来实现字段共享。2.0 版本中可以直接使用普通的 Python 继承机制。

旧版写法:

class CommonFields(AbstractType):
    name = String()

class Pet(CommonFields, Interface):
    pass

新版写法:

class CommonFields(object):
    name = String()

class Pet(CommonFields, Interface):
    pass

2. resolve_only_args 装饰器被弃用

由于解析器 API 的简化,不再需要这个装饰器。

旧版写法:

class User(ObjectType):
    name = String()

    @resolve_only_args
    def resolve_name(root):
        return root.name

新版写法:

class User(ObjectType):
    name = String()

    def resolve_name(root, info):
        return root.name

3. Mutation.Input 改为 Mutation.Arguments

Mutation 的输入参数定义方式发生了变化。

旧版写法:

class User(Mutation):
    class Input:
        name = String()

新版写法:

class User(Mutation):
    class Arguments:
        name = String()

重大变更

1. 简化的解析器 API

解析器的参数传递方式发生了重大变化:

  • 参数现在作为关键字参数直接传递
  • context 参数被移除,改为通过 info.context 访问
  • 参数获取方式更加直观

旧版写法:

my_field = graphene.String(my_arg=graphene.String())

def resolve_my_field(root, args, context, info):
    my_arg = args.get('my_arg')
    return ...

新版写法:

my_field = graphene.String(my_arg=graphene.String())

def resolve_my_field(root, info, my_arg):
    return ...

对于可选参数,建议使用 **args 捕获:

def resolve_my_field(root, info, known_field1, known_field2, **args):
    other_arg = args.get('optional_arg')

2. Node 连接需要显式定义

2.0 版本中,Node 类型不再自动包含 Connection,需要显式定义。

旧版写法:

class User(ObjectType):
    class Meta:
        interfaces = [relay.Node]
    name = String()

class Query(ObjectType):
    user_connection = relay.ConnectionField(User)

新版写法:

class User(ObjectType):
    class Meta:
        interfaces = [relay.Node]
    name = String()

class UserConnection(relay.Connection):
    class Meta:
        node = User

class Query(ObjectType):
    user_connection = relay.ConnectionField(UserConnection)

3. Node.get_node 方法签名变更

获取节点的方法参数顺序发生了变化。

旧版签名:

@classmethod
def get_node(cls, id, context, info):

新版签名:

@classmethod
def get_node(cls, info, id):

新特性

1. 改进的 InputObjectType

现在可以像普通对象一样访问输入类型的字段:

旧版写法:

user_id = input.get('id')

新版写法:

user_id = input.id

还可以在输入类型上定义属性:

class UserInput(InputObjectType):
    id = ID(required=True)

    @property
    def is_valid(root):
        return root.id.startswith('userid_')

2. Meta 选项作为类参数(仅限 Python 3)

现在可以直接在类定义中指定 Meta 选项:

旧版写法:

class Dog(ObjectType):
    class Meta:
        interfaces = [Pet]
    name = String()

新版写法:

class Dog(ObjectType, interfaces=[Pet]):
    name = String()

3. 抽象类型支持

现在可以更简单地创建抽象类型:

class Base(ObjectType):
    class Meta:
        abstract = True

    id = ID()

    def resolve_id(root, info):
        return f"{root.__class__.__name__}_{root.id}"

4. 新增 UUID 标量类型

2.0 版本新增了专门的 UUID 标量类型,方便处理 UUID 数据。

升级建议

  1. 首先检查代码中是否使用了已弃用的功能
  2. 逐步更新解析器签名,注意参数顺序的变化
  3. 显式定义所有需要的 Connection 类型
  4. 利用新特性简化代码结构
  5. 充分测试所有变更,特别是涉及 Node 和 Mutation 的部分

通过遵循本指南,开发者可以顺利将项目迁移到 Graphene 2.0,并享受新版本带来的诸多改进和优化。

graphene GraphQL framework for Python graphene 项目地址: https://gitcode.com/gh_mirrors/gr/graphene

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/606bcce3cac5 在机器学习与深度学习领域,数据集是构建和优化模型的关键基础。本文聚焦于一个名为“黄色车牌数据集(小轿车、大货车)”的资源,该数据集包含约800张黄色车牌图像,涵盖小轿车和大货车等多种车辆类型。黄色车牌在中国大陆主要用于大型车辆,如货车和客车,与蓝色车牌相比,黄色车牌通常代表大吨位或营运车辆,而蓝色车牌则多用于私家车。 数据集中的图像样本与XML文件相结合,XML文件作为结构化数据,记录了图像中车牌的边界框坐标等元数据,为训练目标检测模型提供了重要信息。目标检测模型,例如YOLO、SSD和Faster R-CNN,能够精准定位并识别图像中的车牌区域。深度学习技术,尤其是卷积神经网络(CNN),在车牌识别任务中发挥着核心作用。CNN通过提取图像特征并结合全连接层进行分类,能够有效处理车牌识别任务。此外,预训练模型如VGG、ResNet和Inception经过微调后,可适应特定的车牌识别需求。基于Transformer的DETR等端到端模型也为车牌识别提供了新的解决方案。 在模型训练过程中,数据集通常被划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于调整参数以防止过拟合,测试集则用于评估模型在未知数据上的性能。为了提升模型的泛化能力,数据增强技术如随机翻转、裁剪和旋转图像被广泛应用,以模拟不同的拍摄条件。 黄色车牌识别系统在交通安全、交通监控、车辆追踪和管理等领域具有重要意义。它可用于自动收费、违规行为检测等功能。由于中国各地车牌格式存在差异,模型需要具备足够的适应性,这也要求数据集具有广泛的覆盖范围和多样性。总之,“黄色车牌数据集”为开发高精度车牌识别模型提供了重要资源。结合深度学习技术和目标检测算法,可构建出服务于智能交通系统的高效车牌识别系统。XML文件的解析和利用在训练过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍辰惟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值