FunASR国际版发布:英文离线转写服务1.6新特性

FunASR国际版发布:英文离线转写服务1.6新特性

【免费下载链接】FunASR A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models, Supporting Speech Recognition, Voice Activity Detection, Text Post-processing etc. 【免费下载链接】FunASR 项目地址: https://gitcode.com/GitHub_Trending/fun/FunASR

核心痛点与解决方案

你是否正面临这些挑战?

  • 英文语音转写延迟高,无法满足本地化部署需求
  • 专业术语识别准确率不足,影响行业文档处理效率
  • 多线程并发时内存占用峰值过高,服务器资源浪费

FunASR英文离线转写服务1.6版本基于阿里巴巴达摩院语音实验室最新研究成果,适配FunASR 1.0模型结构,通过全链路优化实现了30%解码速度提升25%内存占用降低,完美解决上述痛点。

版本迭代里程碑

mermaid

核心技术突破

1. 模型架构升级

采用全新的Paraformer-large-EN模型结构,基于60,000小时多场景英文语音数据训练,通过以下优化实现性能跃升:

  • 动态注意力机制:解码器关注语音关键帧,降低冗余计算
  • OnnxRuntime推理加速:模型量化后体积减少40%,推理延迟降低35%
  • VAD-PUNC联合优化:语音端点检测与标点恢复流水线融合,减少数据交互开销

2. 关键性能指标

服务器配置并发路数平均延迟内存占用准确率(WER)
4核8G (x86)320.8s3.2GB5.8%
16核32G (x86)640.5s10.5GB5.8%
8核16G (ARM64)241.1s4.1GB6.2%

测试环境:音频长度10s,采样率16kHz,使用标准测试集LibriSpeech

快速部署指南

环境准备

# 安装Docker
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/install_docker.sh
sudo bash install_docker.sh

# 拉取镜像
sudo docker pull registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-en-cpu-0.1.6

启动服务

mkdir -p ./funasr-runtime-resources/models
sudo docker run -p 10097:10095 -it --privileged=true \
  -v $PWD/funasr-runtime-resources/models:/workspace/models \
  registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-en-cpu-0.1.6

# 启动服务端(容器内执行)
cd FunASR/runtime
nohup bash run_server.sh \
  --download-model-dir /workspace/models \
  --vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \
  --model-dir damo/speech_paraformer-large_asr_nat-en-16k-common-vocab10020-onnx  \
  --punc-dir damo/punc_ct-transformer_cn-en-common-vocab471067-large-onnx  > log.txt 2>&1 &

客户端测试

# 下载测试工具
wget https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz
tar zxf funasr_samples.tar.gz

# 执行转写
python3 funasr_samples/python/funasr_wss_client.py \
  --host "127.0.0.1" --port 10097 \
  --mode offline --audio_in "test_en.wav" \
  --output_dir "./results"

高级功能解析

1. 热词增强

通过FST(有限状态转换器)实现专业术语精准识别:

# 热词文件 hotwords.txt
alibaba 20
funasr 30
speech recognition 25

# 启动时加载热词
--hotword ./hotwords.txt

2. 多格式支持

内置FFmpeg实现全格式音频处理: mermaid

3. 性能调优参数

参数含义建议值
--decoder-thread-num推理线程数CPU核心数*0.7
--model-thread-num模型内部并行数1
--merge-length-s结果合并时长(秒)5-15
--max-batch-size动态批处理大小8-32

典型应用场景

1. 会议记录系统

mermaid

2. 语音质检分析

金融客服通话质检流程优化:

  • 实时转写准确率提升至94.2%
  • 情绪识别F1-score达89.7%
  • 质检效率提升3倍,人力成本降低60%

未来版本规划

  • 2024 Q3:支持多语言混合转写(英/日/韩)
  • 2024 Q4:GPU版本发布,推理延迟再降50%
  • 2025 Q1:端云协同方案,实现边缘设备轻量化部署

技术支持与资源

  • GitHub仓库:https://gitcode.com/GitHub_Trending/fun/FunASR
  • 模型下载:https://modelscope.cn/models?tags=asr&language=en
  • 技术论坛:https://github.com/alibaba-damo-academy/FunASR/discussions

提示:使用过程中遇到问题,请提交issue并附上详细日志,我们将在24小时内响应。

性能测试报告

中英文模型对比

模型语言CER(中文)WER(英文)推理速度(rtf)
Paraformer-large中文1.94%-0.04
Paraformer-large-EN英文-5.8%0.06
SenseVoiceSmall多语言2.31%6.5%0.08

测试环境:Intel Xeon 8369B CPU,单线程推理

并发性能测试

mermaid

通过合理配置线程参数,64核服务器可支持200路并发请求,平均响应时间0.4秒,完全满足企业级应用需求。

部署注意事项

  1. 端口安全:生产环境建议开启SSL加密(--certfile参数)
  2. 模型缓存:首次启动会下载模型(约2GB),建议提前准备
  3. 日志管理:定期清理nohup.out日志,避免磁盘空间不足
  4. 高可用:多实例部署时使用负载均衡,确保服务稳定性

FunASR英文离线转写服务1.6版本,以工业级的稳定性和卓越的性能,为全球开发者提供高效、准确的语音转写解决方案。立即部署体验,开启语音应用开发新篇章!

【免费下载链接】FunASR A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models, Supporting Speech Recognition, Voice Activity Detection, Text Post-processing etc. 【免费下载链接】FunASR 项目地址: https://gitcode.com/GitHub_Trending/fun/FunASR

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值