TensorRT-LLM C++扩展开发:自定义算子实现全指南

TensorRT-LLM C++扩展开发:自定义算子实现全指南

【免费下载链接】TensorRT-LLM TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines. 【免费下载链接】TensorRT-LLM 项目地址: https://gitcode.com/GitHub_Trending/te/TensorRT-LLM

引言:突破LLM部署性能瓶颈

你是否在LLM部署中遇到过这些痛点?现有算子无法满足特定数学运算需求,通用实现难以发挥硬件极致性能,或是开源库的设计阻碍定制化优化。作为NVIDIA GPU生态中高性能推理的核心组件,TensorRT-LLM提供了灵活的C++扩展机制,允许开发者通过自定义算子释放GPU算力潜能。本文将系统讲解从算子设计、内核实现到插件集成的全流程,带你掌握在生产环境中部署高性能自定义算子的关键技术。

读完本文你将获得:

  • 自定义算子的工程化实现框架
  • CUDA内核与TensorRT插件的桥接方法
  • 多维度性能优化策略(内存/计算/通信)
  • 完整的测试与集成验证流程
  • 基于Cutlass和FMHA的工业级参考案例

环境准备与开发框架

系统环境配置

依赖项版本要求作用
CUDA Toolkit12.1+提供NVCC编译器和CUDA运行时
TensorRT9.2.0+推理引擎核心库
CMake3.18+跨平台构建系统
GCC9.4.0+C++编译器
Python3.8+辅助构建与测试

开发环境搭建

# 克隆仓库
git clone https://gitcode.com/GitHub_Trending/te/TensorRT-LLM
cd TensorRT-LLM

# 构建基础环境
python3 ./scripts/build_wheel.py --cuda_architectures "90-real;100-real"

# 安装开发依赖
pip install -r requirements-dev.txt

目录结构解析

cpp/kernels/
├── fmha_v2/           # Flash Attention v2实现
│   ├── src/           # CUDA内核源代码
│   ├── test/          # 单元测试与性能测试
│   └── setup.py       # 构建配置
└── xqa/               # 新一代注意力算子
    ├── mha.cu         # 主内核实现
    ├── mha.h          # 接口定义
    └── CMakeLists.txt # 编译配置

自定义算子开发全流程

1. 算子设计规范

接口设计原则

TensorRT-LLM算子遵循以下设计模式:

// 标准算子接口定义
void launchCustomOp(
    cudaDeviceProp const& prop,       // GPU设备属性
    InputType const* input,           // 输入张量
    OutputType* output,               // 输出张量
    size_t batchSize,                 // 批大小
    size_t seqLen,                    // 序列长度
    cudaStream_t stream               // CUDA流
);
数据布局约定
张量布局格式维度顺序示例
Q/K/V行优先[batch, heads, seq_len, head_size]float4* Q
激活值列优先[seq_len, batch, hidden_size]half* output
权重优化布局[out_features, in_features]uint4* weight

2. CUDA内核实现

以简化版的自定义注意力算子为例:

// custom_attention.cu
#include <cuda_runtime.h>
#include <tensorrt_llm/common/assert.h>

namespace tensorrt_llm {
namespace kernels {

template <typename T>
__global__ void customAttentionKernel(
    T const* __restrict__ q,
    T const* __restrict__ k,
    T const* __restrict__ v,
    T* __restrict__ output,
    int batchSize,
    int seqLen,
    int headSize) {
    
    // 计算全局索引
    int batch = blockIdx.z;
    int head = blockIdx.y;
    int seq = threadIdx.x + blockIdx.x * blockDim.x;
    
    if (seq >= seqLen || batch >= batchSize) return;
    
    // 局部寄存器缓存
    T qVec[16];
    #pragma unroll
    for (int i = 0; i < 16; ++i) {
        qVec[i] = q[batch * seqLen * headSize + head * seqLen * headSize + seq * headSize + i];
    }
    
    // 核心计算逻辑
    T result[16] = {0};
    #pragma unroll
    for (int t = 0; t < seqLen; ++t) {
        T score = 0;
        #pragma unroll
        for (int i = 0; i < 16; ++i) {
            score += qVec[i] * k[batch * seqLen * headSize + head * seqLen * headSize + t * headSize + i];
        }
        score = __expf(score) / (seqLen * 0.125f);
        
        #pragma unroll
        for (int i = 0; i < 16; ++i) {
            result[i] += score * v[batch * seqLen * headSize + head * seqLen * headSize + t * headSize + i];
        }
    }
    
    // 写回全局内存
    #pragma unroll
    for (int i = 0; i < 16; ++i) {
        output[batch * seqLen * headSize + head * seqLen * headSize + seq * headSize + i] = result[i];
    }
}

template <typename T>
void launchCustomAttention(
    T const* q,
    T const* k,
    T const* v,
    T* output,
    int batchSize,
    int numHeads,
    int seqLen,
    int headSize,
    cudaStream_t stream) {
    
    dim3 block(256);  // 256 threads per block
    dim3 grid((seqLen + block.x - 1) / block.x, numHeads, batchSize);
    
    customAttentionKernel<T><<<grid, block, 0, stream>>>(
        q, k, v, output, batchSize, seqLen, headSize
    );
    
    TLLM_CUDA_CHECK(cudaGetLastError());
}

// 显式实例化
template void launchCustomAttention<float>(float const*, float const*, float const*, float*, int, int, int, int, cudaStream_t);
template void launchCustomAttention<half>(half const*, half const*, half const*, half*, int, int, int, int, cudaStream_t);

}  // namespace kernels
}  // namespace tensorrt_llm

3. 编译配置

CMakeLists.txt示例
cmake_minimum_required(VERSION 3.18)
project(custom_ops LANGUAGES CXX CUDA)

set(CMAKE_CUDA_ARCHITECTURES 89-real 90-real)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CUDA_STANDARD 17)

# 编译选项
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wno-unknown-pragmas")
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -lineinfo")

# 包含目录
include_directories(
    ${CMAKE_CURRENT_SOURCE_DIR}/../include
    ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}
)

# 源文件
set(SOURCES
    custom_attention.cu
    activation_kernels.cu
)

# 构建动态库
add_library(tensorrt_llm_custom_ops SHARED ${SOURCES})

# 链接依赖
target_link_libraries(tensorrt_llm_custom_ops PUBLIC
    CUDA::cudart
    CUDA::cublas
)

# 安装规则
install(TARGETS tensorrt_llm_custom_ops
    LIBRARY DESTINATION lib
    ARCHIVE DESTINATION lib
)
编译命令
# 创建构建目录
mkdir -p build && cd build

# 配置CMake
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=install

# 编译
make -j$(nproc)

# 安装
make install

4. 插件集成

TensorRT插件注册
// custom_plugin.h
#include <nvinfer1/IPluginV2DynamicExt.h>

namespace tensorrt_llm {
namespace plugins {

class CustomAttentionPlugin : public nvinfer1::IPluginV2DynamicExt {
public:
    // 插件元数据
    const char* getPluginType() const noexcept override { return "CustomAttention"; }
    const char* getPluginVersion() const noexcept override { return "1.0.0"; }
    int getNbOutputs() const noexcept override { return 1; }
    
    // 核心推理实现
    int enqueue(
        nvinfer1::PluginTensorDesc const* inputDesc,
        nvinfer1::PluginTensorDesc const* outputDesc,
        void const* const* inputs,
        void* const* outputs,
        void* workspace,
        cudaStream_t stream) noexcept override {
        
        // 解析输入输出
        auto const* q = static_cast<float const*>(inputs[0]);
        auto const* k = static_cast<float const*>(inputs[1]);
        auto const* v = static_cast<float const*>(inputs[2]);
        auto* output = static_cast<float*>(outputs[0]);
        
        // 获取维度信息
        int batchSize = inputDesc[0].dims.d[0];
        int numHeads = inputDesc[0].dims.d[1];
        int seqLen = inputDesc[0].dims.d[2];
        int headSize = inputDesc[0].dims.d[3];
        
        // 调用自定义内核
        kernels::launchCustomAttention(
            q, k, v, output, batchSize, numHeads, seqLen, headSize, stream
        );
        
        return 0;
    }
    
    // 其他必要接口实现...
};

// 插件创建器
class CustomAttentionPluginCreator : public nvinfer1::IPluginCreator {
public:
    const char* getPluginName() const noexcept override { return "CustomAttention"; }
    const char* getPluginVersion() const noexcept override { return "1.0.0"; }
    
    nvinfer1::IPluginV2* createPlugin(
        const char* name, 
        const nvinfer1::PluginFieldCollection* fc) noexcept override {
        
        return new CustomAttentionPlugin();
    }
};

// 注册插件
REGISTER_TENSORRT_PLUGIN(CustomAttentionPluginCreator);

}  // namespace plugins
}  // namespace tensorrt_llm
插件初始化与使用
// 插件初始化示例 (main.cpp)
#include <tensorrt_llm/plugins/custom_plugin.h>

int main() {
    // 创建TensorRT日志器
    auto logger = std::make_unique<TRTLogger>();
    
    // 初始化插件库
    bool status = initLibNvInferPlugins(logger.get(), "tensorrt_llm");
    if (!status) {
        std::cerr << "Failed to initialize plugins" << std::endl;
        return -1;
    }
    
    // 创建builder和network
    auto builder = std::unique_ptr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(*logger));
    auto network = std::unique_ptr<nvinfer1::INetworkDefinition>(builder->createNetworkV2(0));
    
    // 添加自定义算子到网络
    auto q = network->addInput("q", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
    auto k = network->addInput("k", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
    auto v = network->addInput("v", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
    
    // 创建自定义插件
    auto creator = getPluginCreator("CustomAttention", "1.0.0");
    nvinfer1::PluginFieldCollection fc;
    auto plugin = creator->createPlugin("custom_attention", &fc);
    
    // 添加插件到网络
    auto layer = network->addPluginV2(&q, 3, *plugin);
    network->markOutput(*layer->getOutput(0));
    
    // 构建引擎...
    return 0;
}

性能优化策略

内存优化

数据布局优化
布局类型适用场景内存带宽提升
向量类型 (float4)连续内存访问~1.8x
结构数组 (SoA)计算密集型算子~1.3x
张量核心布局Tensor Core加速~3.5x
内存重用示例
// 优化前:频繁内存分配
float* temp1;
cudaMalloc(&temp1, size);
// ...计算...
float* temp2;
cudaMalloc(&temp2, size);
// ...计算...

// 优化后:内存池重用
class MemoryPool {
public:
    void* allocate(size_t size) {
        if (m_pool.find(size) != m_pool.end() && !m_pool[size].empty()) {
            void* ptr = m_pool[size].back();
            m_pool[size].pop_back();
            return ptr;
        }
        void* ptr;
        cudaMalloc(&ptr, size);
        return ptr;
    }
    
    void deallocate(void* ptr, size_t size) {
        m_pool[size].push_back(ptr);
    }
    
private:
    std::unordered_map<size_t, std::vector<void*>> m_pool;
};

计算优化

Tensor Core利用
// 使用Tensor Core的矩阵乘法
__global__ void tensorCoreGemmKernel(
    half const* A,  // [M, K]
    half const* B,  // [K, N]
    float* C,       // [M, N]
    int M, int N, int K) {
    
    // 32x32x16 Tensor Core操作
    nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, 32, 32, 16, half, nvcuda::wmma::row_major> a_frag;
    nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, 32, 32, 16, half, nvcuda::wmma::col_major> b_frag;
    nvcuda::wmma::fragment<nvcuda::wmma::accumulator, 32, 32, 16, float> c_frag;
    
    // 加载数据
    nvcuda::wmma::load_matrix_sync(a_frag, &A[blockIdx.x*32*K + threadIdx.x*16], K);
    nvcuda::wmma::load_matrix_sync(b_frag, &B[threadIdx.y*16*N + blockIdx.y*32], N);
    nvcuda::wmma::fill_fragment(c_frag, 0.0f);
    
    // 计算
    nvcuda::wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
    
    // 存储结果
    nvcuda::wmma::store_matrix_sync(&C[blockIdx.x*32*N + blockIdx.y*32], c_frag, N, nvcuda::wmma::mem_row_major);
}
循环优化
// 优化前:朴素嵌套循环
for (int i = 0; i < M; ++i) {
    for (int j = 0; j < N; ++j) {
        float sum = 0;
        for (int k = 0; k < K; ++k) {
            sum += A[i*K + k] * B[k*N + j];
        }
        C[i*N + j] = sum;
    }
}

// 优化后:循环重排与分块
const int BLOCK = 32;
for (int i0 = 0; i0 < M; i0 += BLOCK) {
    for (int j0 = 0; j0 < N; j0 += BLOCK) {
        for (int k0 = 0; k0 < K; k0 += BLOCK) {
            for (int i = i0; i < min(i0+BLOCK, M); ++i) {
                for (int j = j0; j < min(j0+BLOCK, N); ++j) {
                    float sum = C[i*N + j];
                    for (int k = k0; k < min(k0+BLOCK, K); ++k) {
                        sum += A[i*K + k] * B[k*N + j];
                    }
                    C[i*N + j] = sum;
                }
            }
        }
    }
}

并行策略

线程块设计
// 针对不同序列长度的动态分块策略
dim3 getGridSize(int seqLen, int batchSize, int numHeads) {
    // 小序列:按batch和head并行
    if (seqLen <= 256) {
        return dim3(seqLen, numHeads, batchSize);
    }
    // 中长序列:按序列分块
    else if (seqLen <= 8192) {
        return dim3((seqLen + 255)/256, numHeads * batchSize, 1);
    }
    // 超长序列:3D分块
    else {
        return dim3(32, 32, (numHeads * batchSize + 31)/32);
    }
}

测试与验证

单元

【免费下载链接】TensorRT-LLM TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines. 【免费下载链接】TensorRT-LLM 项目地址: https://gitcode.com/GitHub_Trending/te/TensorRT-LLM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值