TensorRT-LLM C++扩展开发:自定义算子实现全指南
引言:突破LLM部署性能瓶颈
你是否在LLM部署中遇到过这些痛点?现有算子无法满足特定数学运算需求,通用实现难以发挥硬件极致性能,或是开源库的设计阻碍定制化优化。作为NVIDIA GPU生态中高性能推理的核心组件,TensorRT-LLM提供了灵活的C++扩展机制,允许开发者通过自定义算子释放GPU算力潜能。本文将系统讲解从算子设计、内核实现到插件集成的全流程,带你掌握在生产环境中部署高性能自定义算子的关键技术。
读完本文你将获得:
- 自定义算子的工程化实现框架
- CUDA内核与TensorRT插件的桥接方法
- 多维度性能优化策略(内存/计算/通信)
- 完整的测试与集成验证流程
- 基于Cutlass和FMHA的工业级参考案例
环境准备与开发框架
系统环境配置
依赖项 | 版本要求 | 作用 |
---|---|---|
CUDA Toolkit | 12.1+ | 提供NVCC编译器和CUDA运行时 |
TensorRT | 9.2.0+ | 推理引擎核心库 |
CMake | 3.18+ | 跨平台构建系统 |
GCC | 9.4.0+ | C++编译器 |
Python | 3.8+ | 辅助构建与测试 |
开发环境搭建
# 克隆仓库
git clone https://gitcode.com/GitHub_Trending/te/TensorRT-LLM
cd TensorRT-LLM
# 构建基础环境
python3 ./scripts/build_wheel.py --cuda_architectures "90-real;100-real"
# 安装开发依赖
pip install -r requirements-dev.txt
目录结构解析
cpp/kernels/
├── fmha_v2/ # Flash Attention v2实现
│ ├── src/ # CUDA内核源代码
│ ├── test/ # 单元测试与性能测试
│ └── setup.py # 构建配置
└── xqa/ # 新一代注意力算子
├── mha.cu # 主内核实现
├── mha.h # 接口定义
└── CMakeLists.txt # 编译配置
自定义算子开发全流程
1. 算子设计规范
接口设计原则
TensorRT-LLM算子遵循以下设计模式:
// 标准算子接口定义
void launchCustomOp(
cudaDeviceProp const& prop, // GPU设备属性
InputType const* input, // 输入张量
OutputType* output, // 输出张量
size_t batchSize, // 批大小
size_t seqLen, // 序列长度
cudaStream_t stream // CUDA流
);
数据布局约定
张量 | 布局格式 | 维度顺序 | 示例 |
---|---|---|---|
Q/K/V | 行优先 | [batch, heads, seq_len, head_size] | float4* Q |
激活值 | 列优先 | [seq_len, batch, hidden_size] | half* output |
权重 | 优化布局 | [out_features, in_features] | uint4* weight |
2. CUDA内核实现
以简化版的自定义注意力算子为例:
// custom_attention.cu
#include <cuda_runtime.h>
#include <tensorrt_llm/common/assert.h>
namespace tensorrt_llm {
namespace kernels {
template <typename T>
__global__ void customAttentionKernel(
T const* __restrict__ q,
T const* __restrict__ k,
T const* __restrict__ v,
T* __restrict__ output,
int batchSize,
int seqLen,
int headSize) {
// 计算全局索引
int batch = blockIdx.z;
int head = blockIdx.y;
int seq = threadIdx.x + blockIdx.x * blockDim.x;
if (seq >= seqLen || batch >= batchSize) return;
// 局部寄存器缓存
T qVec[16];
#pragma unroll
for (int i = 0; i < 16; ++i) {
qVec[i] = q[batch * seqLen * headSize + head * seqLen * headSize + seq * headSize + i];
}
// 核心计算逻辑
T result[16] = {0};
#pragma unroll
for (int t = 0; t < seqLen; ++t) {
T score = 0;
#pragma unroll
for (int i = 0; i < 16; ++i) {
score += qVec[i] * k[batch * seqLen * headSize + head * seqLen * headSize + t * headSize + i];
}
score = __expf(score) / (seqLen * 0.125f);
#pragma unroll
for (int i = 0; i < 16; ++i) {
result[i] += score * v[batch * seqLen * headSize + head * seqLen * headSize + t * headSize + i];
}
}
// 写回全局内存
#pragma unroll
for (int i = 0; i < 16; ++i) {
output[batch * seqLen * headSize + head * seqLen * headSize + seq * headSize + i] = result[i];
}
}
template <typename T>
void launchCustomAttention(
T const* q,
T const* k,
T const* v,
T* output,
int batchSize,
int numHeads,
int seqLen,
int headSize,
cudaStream_t stream) {
dim3 block(256); // 256 threads per block
dim3 grid((seqLen + block.x - 1) / block.x, numHeads, batchSize);
customAttentionKernel<T><<<grid, block, 0, stream>>>(
q, k, v, output, batchSize, seqLen, headSize
);
TLLM_CUDA_CHECK(cudaGetLastError());
}
// 显式实例化
template void launchCustomAttention<float>(float const*, float const*, float const*, float*, int, int, int, int, cudaStream_t);
template void launchCustomAttention<half>(half const*, half const*, half const*, half*, int, int, int, int, cudaStream_t);
} // namespace kernels
} // namespace tensorrt_llm
3. 编译配置
CMakeLists.txt示例
cmake_minimum_required(VERSION 3.18)
project(custom_ops LANGUAGES CXX CUDA)
set(CMAKE_CUDA_ARCHITECTURES 89-real 90-real)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CUDA_STANDARD 17)
# 编译选项
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wno-unknown-pragmas")
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -lineinfo")
# 包含目录
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}/../include
${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}
)
# 源文件
set(SOURCES
custom_attention.cu
activation_kernels.cu
)
# 构建动态库
add_library(tensorrt_llm_custom_ops SHARED ${SOURCES})
# 链接依赖
target_link_libraries(tensorrt_llm_custom_ops PUBLIC
CUDA::cudart
CUDA::cublas
)
# 安装规则
install(TARGETS tensorrt_llm_custom_ops
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib
)
编译命令
# 创建构建目录
mkdir -p build && cd build
# 配置CMake
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=install
# 编译
make -j$(nproc)
# 安装
make install
4. 插件集成
TensorRT插件注册
// custom_plugin.h
#include <nvinfer1/IPluginV2DynamicExt.h>
namespace tensorrt_llm {
namespace plugins {
class CustomAttentionPlugin : public nvinfer1::IPluginV2DynamicExt {
public:
// 插件元数据
const char* getPluginType() const noexcept override { return "CustomAttention"; }
const char* getPluginVersion() const noexcept override { return "1.0.0"; }
int getNbOutputs() const noexcept override { return 1; }
// 核心推理实现
int enqueue(
nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs,
void* const* outputs,
void* workspace,
cudaStream_t stream) noexcept override {
// 解析输入输出
auto const* q = static_cast<float const*>(inputs[0]);
auto const* k = static_cast<float const*>(inputs[1]);
auto const* v = static_cast<float const*>(inputs[2]);
auto* output = static_cast<float*>(outputs[0]);
// 获取维度信息
int batchSize = inputDesc[0].dims.d[0];
int numHeads = inputDesc[0].dims.d[1];
int seqLen = inputDesc[0].dims.d[2];
int headSize = inputDesc[0].dims.d[3];
// 调用自定义内核
kernels::launchCustomAttention(
q, k, v, output, batchSize, numHeads, seqLen, headSize, stream
);
return 0;
}
// 其他必要接口实现...
};
// 插件创建器
class CustomAttentionPluginCreator : public nvinfer1::IPluginCreator {
public:
const char* getPluginName() const noexcept override { return "CustomAttention"; }
const char* getPluginVersion() const noexcept override { return "1.0.0"; }
nvinfer1::IPluginV2* createPlugin(
const char* name,
const nvinfer1::PluginFieldCollection* fc) noexcept override {
return new CustomAttentionPlugin();
}
};
// 注册插件
REGISTER_TENSORRT_PLUGIN(CustomAttentionPluginCreator);
} // namespace plugins
} // namespace tensorrt_llm
插件初始化与使用
// 插件初始化示例 (main.cpp)
#include <tensorrt_llm/plugins/custom_plugin.h>
int main() {
// 创建TensorRT日志器
auto logger = std::make_unique<TRTLogger>();
// 初始化插件库
bool status = initLibNvInferPlugins(logger.get(), "tensorrt_llm");
if (!status) {
std::cerr << "Failed to initialize plugins" << std::endl;
return -1;
}
// 创建builder和network
auto builder = std::unique_ptr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(*logger));
auto network = std::unique_ptr<nvinfer1::INetworkDefinition>(builder->createNetworkV2(0));
// 添加自定义算子到网络
auto q = network->addInput("q", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
auto k = network->addInput("k", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
auto v = network->addInput("v", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, -1, -1, -1));
// 创建自定义插件
auto creator = getPluginCreator("CustomAttention", "1.0.0");
nvinfer1::PluginFieldCollection fc;
auto plugin = creator->createPlugin("custom_attention", &fc);
// 添加插件到网络
auto layer = network->addPluginV2(&q, 3, *plugin);
network->markOutput(*layer->getOutput(0));
// 构建引擎...
return 0;
}
性能优化策略
内存优化
数据布局优化
布局类型 | 适用场景 | 内存带宽提升 |
---|---|---|
向量类型 (float4) | 连续内存访问 | ~1.8x |
结构数组 (SoA) | 计算密集型算子 | ~1.3x |
张量核心布局 | Tensor Core加速 | ~3.5x |
内存重用示例
// 优化前:频繁内存分配
float* temp1;
cudaMalloc(&temp1, size);
// ...计算...
float* temp2;
cudaMalloc(&temp2, size);
// ...计算...
// 优化后:内存池重用
class MemoryPool {
public:
void* allocate(size_t size) {
if (m_pool.find(size) != m_pool.end() && !m_pool[size].empty()) {
void* ptr = m_pool[size].back();
m_pool[size].pop_back();
return ptr;
}
void* ptr;
cudaMalloc(&ptr, size);
return ptr;
}
void deallocate(void* ptr, size_t size) {
m_pool[size].push_back(ptr);
}
private:
std::unordered_map<size_t, std::vector<void*>> m_pool;
};
计算优化
Tensor Core利用
// 使用Tensor Core的矩阵乘法
__global__ void tensorCoreGemmKernel(
half const* A, // [M, K]
half const* B, // [K, N]
float* C, // [M, N]
int M, int N, int K) {
// 32x32x16 Tensor Core操作
nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, 32, 32, 16, half, nvcuda::wmma::row_major> a_frag;
nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, 32, 32, 16, half, nvcuda::wmma::col_major> b_frag;
nvcuda::wmma::fragment<nvcuda::wmma::accumulator, 32, 32, 16, float> c_frag;
// 加载数据
nvcuda::wmma::load_matrix_sync(a_frag, &A[blockIdx.x*32*K + threadIdx.x*16], K);
nvcuda::wmma::load_matrix_sync(b_frag, &B[threadIdx.y*16*N + blockIdx.y*32], N);
nvcuda::wmma::fill_fragment(c_frag, 0.0f);
// 计算
nvcuda::wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
// 存储结果
nvcuda::wmma::store_matrix_sync(&C[blockIdx.x*32*N + blockIdx.y*32], c_frag, N, nvcuda::wmma::mem_row_major);
}
循环优化
// 优化前:朴素嵌套循环
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
float sum = 0;
for (int k = 0; k < K; ++k) {
sum += A[i*K + k] * B[k*N + j];
}
C[i*N + j] = sum;
}
}
// 优化后:循环重排与分块
const int BLOCK = 32;
for (int i0 = 0; i0 < M; i0 += BLOCK) {
for (int j0 = 0; j0 < N; j0 += BLOCK) {
for (int k0 = 0; k0 < K; k0 += BLOCK) {
for (int i = i0; i < min(i0+BLOCK, M); ++i) {
for (int j = j0; j < min(j0+BLOCK, N); ++j) {
float sum = C[i*N + j];
for (int k = k0; k < min(k0+BLOCK, K); ++k) {
sum += A[i*K + k] * B[k*N + j];
}
C[i*N + j] = sum;
}
}
}
}
}
并行策略
线程块设计
// 针对不同序列长度的动态分块策略
dim3 getGridSize(int seqLen, int batchSize, int numHeads) {
// 小序列:按batch和head并行
if (seqLen <= 256) {
return dim3(seqLen, numHeads, batchSize);
}
// 中长序列:按序列分块
else if (seqLen <= 8192) {
return dim3((seqLen + 255)/256, numHeads * batchSize, 1);
}
// 超长序列:3D分块
else {
return dim3(32, 32, (numHeads * batchSize + 31)/32);
}
}
测试与验证
单元
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考