基于PyTorch的强化学习实战:GridWorld游戏中的Actor-Critic算法实现
项目概述
本项目使用PyTorch框架实现了一个强化学习解决方案,让智能体在GridWorld环境中学习最优策略。GridWorld是一个经典的网格环境,智能体需要通过探索找到目标位置,同时避开负面奖励区域。项目采用了Actor-Critic算法结合REINFORCE策略梯度方法,展示了如何在实际问题中应用这些强化学习技术。
核心概念解析
GridWorld环境设计
GridWorld环境包含以下几个关键元素:
- 网格结构:一个8x8的网格世界,周围有边界墙
- 植物资源:随机分布在网格中的植物,提供不同数值的奖励(-1到0.5之间)
- 目标位置:位于四个角落之一,提供+10的奖励
- 边界惩罚:碰到边界会获得-10的惩罚
- 视野限制:智能体只能看到周围1格范围内的环境
智能体设计
智能体具有以下特性:
- 生命值:初始为1,每步减少0.02
- 移动能力:可以上下左右移动
- 奖励机制:吃到植物增加生命值,到达目标获得胜利,生命值归零则失败
技术实现详解
神经网络架构
项目使用了一个简单的神经网络作为策略函数(Policy Network),结构如下:
class Policy(nn.Module):
def __init__(self, hidden_size):
super(Policy, self).__init__()
visible_squares = (VISIBLE_RADIUS * 2 + 1) ** 2
input_size = visible_squares + 1 + 2 # 视野区域+生命值+位置坐标
self.inp = nn.Linear(input_size, hidden_size)
self.out = nn.Linear(hidden_size, 4 + 1) # 4个动作+1个价值估计
网络输入包括:
- 智能体周围的可见区域(3x3网格)
- 当前生命值
- 归一化的位置坐标
网络输出分为两部分:
- 4个动作的概率分布(上、右、下、左)
- 当前状态的价值估计
动作选择策略
def select_action(e, state):
drop = interpolate(e, DROP_MAX, DROP_MIN, DROP_OVER)
state = Variable(torch.from_numpy(state).float())
scores, value = policy(state)
scores = F.dropout(scores, drop, True) # 使用dropout实现探索
scores = F.softmax(scores)
action = scores.multinomial() # 根据概率分布采样动作
return action, value
这里采用了ε-greedy策略的变体,通过dropout实现探索。随着训练进行,dropout率逐渐降低(从0.3降到0.05),使智能体从探索转向利用。
REINFORCE算法实现
def finish_episode(e, actions, values, rewards):
# 计算折扣回报
discounted_rewards = []
R = 0
for r in rewards[::-1]:
R = r + gamma * R
discounted_rewards.insert(0, R)
# 使用Critic的价值作为基线
value_loss = 0
for action, value, reward in zip(actions, values, discounted_rewards):
reward_diff = reward - value.data[0]
action.reinforce(reward_diff) # REINFORCE更新
value_loss += mse(value, Variable(torch.Tensor([reward])))
# 反向传播
optimizer.zero_grad()
nodes = [value_loss] + actions
gradients = [torch.ones(1)] + [None for _ in actions]
autograd.backward(nodes, gradients)
optimizer.step()
这里实现了带有基线的REINFORCE算法:
- 计算每个时间步的折扣回报
- 使用Critic网络估计的状态价值作为基线
- 通过比较实际回报和基线来调整策略梯度
- 同时优化Critic网络的价值估计
训练过程分析
训练过程主要包含以下步骤:
- 初始化环境和策略网络
- 运行一个完整episode,记录动作、价值和奖励
- 计算折扣回报
- 使用REINFORCE算法更新策略网络
- 使用均方误差优化价值估计
- 重复直到平均奖励达到1.0(即智能体能够稳定找到目标)
关键参数说明
gamma = 0.9
:折扣因子,控制未来奖励的重要性hidden_size = 50
:神经网络隐藏层大小learning_rate = 1e-4
:学习率weight_decay = 1e-5
:权重衰减(L2正则化)DROP_MAX = 0.3
:初始探索率DROP_MIN = 0.05
:最小探索率DROP_OVER = 200000
:探索率衰减步数
实际应用建议
- 调整探索策略:可以尝试不同的探索率衰减曲线,如指数衰减
- 奖励设计:项目中使用稀疏奖励(只在结束时给予),可以尝试密集奖励(每步给予小奖励)
- 网络结构:对于更复杂的环境,可以尝试CNN处理网格输入
- 算法改进:可以考虑使用PPO、A2C等更先进的策略梯度算法
总结
本项目展示了如何使用PyTorch实现Actor-Critic算法解决GridWorld问题。通过结合策略梯度方法和价值函数估计,智能体能够有效地学习到环境中的最优策略。这种实现方式不仅适用于简单的网格环境,其核心思想也可以扩展到更复杂的强化学习任务中。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考