【亲测免费】 QA-GNN 项目使用教程

QA-GNN 项目使用教程

项目介绍

QA-GNN 是一个端到端的问题回答模型,它通过图神经网络联合推理预训练语言模型和知识图谱中的知识。与仅使用知识图谱(KG)或语言模型(LM)的现有模型相比,QA-GNN 实现了强大的问答性能。该项目的主要动机是访问相关知识并能够对其进行推理,这些知识可以隐式地编码在大型语言模型中,也可以显式地编码在结构化知识图谱中。

项目快速启动

环境设置

首先,创建一个 conda 环境并激活它:

conda create -n qagnn python=3.7
source activate qagnn

安装所需的依赖项:

pip install torch==1.8.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

下载项目

克隆项目仓库到本地:

git clone https://github.com/michiyasunaga/qagnn.git
cd qagnn

运行示例

运行以下命令来启动一个示例:

python run.py

应用案例和最佳实践

应用案例

QA-GNN 在 CommonsenseQA 和 OpenBookQA 数据集上进行了评估,展示了其相对于现有 LM 和 LM+KG 模型的改进,以及其执行可解释和结构化推理的能力,例如正确处理问题中的否定。

最佳实践

  1. 数据预处理:确保输入数据格式正确,以便模型能够有效处理。
  2. 模型调优:根据具体应用场景调整模型参数,以达到最佳性能。
  3. 结果解释:利用 QA-GNN 的可解释性特性,分析模型输出,确保结果的准确性和可靠性。

典型生态项目

相关项目

  1. BERT:预训练语言模型,为 QA-GNN 提供强大的语言理解能力。
  2. Graph Neural Networks:图神经网络,用于在 QA-GNN 中进行图结构数据的推理。
  3. CommonsenseQA:一个常用的问答数据集,用于评估 QA-GNN 的性能。

通过结合这些生态项目,QA-GNN 能够提供一个强大的问答解决方案,适用于多种应用场景。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮奕清Primavera

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值