Weighted-Boxes-Fusion项目示例解析:目标检测框融合技术实践

Weighted-Boxes-Fusion项目示例解析:目标检测框融合技术实践

Weighted-Boxes-Fusion Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method. Weighted-Boxes-Fusion 项目地址: https://gitcode.com/gh_mirrors/we/Weighted-Boxes-Fusion

项目概述

Weighted-Boxes-Fusion(WBF)是一个用于目标检测任务中多模型预测结果融合的先进算法。该项目提供了一种比传统非极大值抑制(NMS)更有效的边界框融合方法,能够显著提升目标检测的准确率。本文将通过分析项目中的示例代码,深入讲解WBF算法的实现原理和应用方法。

核心功能解析

1. 可视化工具函数

项目中提供了几个辅助可视化函数,帮助我们直观理解算法效果:

def show_image(im, name='image'):
    # 显示图像的基本函数
    cv2.imshow(name, im.astype(np.uint8))
    cv2.waitKey(0)
    cv2.destroyAllWindows()

def gen_color_list(model_num, labels_num):
    # 为不同模型和类别生成颜色列表
    color_list = np.zeros((model_num, labels_num, 3))
    colors_to_use = [(255,0,0), (0,255,0), (0,0,255), (0,255,255), (255,0,255), (255,255,0), (0,0,0)]
    # ...颜色分配逻辑...
    return color_list

def show_boxes(boxes_list, scores_list, labels_list, image_size=800):
    # 在空白图像上绘制边界框
    image = np.zeros((image_size, image_size, 3), dtype=np.uint8)
    image[...] = 255
    # ...绘制逻辑...
    show_image(image)

这些可视化工具能够清晰展示不同模型的预测结果以及融合后的效果,其中:

  • 不同模型使用不同颜色表示
  • 边界框的粗细反映置信度分数
  • 不同类别也有颜色区分

2. 加权框融合(WBF)示例

2.1 多模型融合示例
def example_wbf_2_models(iou_thr=0.55, draw_image=True):
    # 定义两个模型的预测结果
    boxes_list = [...]
    scores_list = [...]
    labels_list = [...]
    weights = [2, 1]  # 模型权重
    
    # 执行WBF融合
    boxes, scores, labels = weighted_boxes_fusion(
        boxes_list, scores_list, labels_list, 
        weights=weights, iou_thr=iou_thr, skip_box_thr=0.0
    )

关键参数说明:

  • iou_thr: 重叠阈值,决定哪些框应该被融合
  • weights: 各模型的权重,影响融合结果
  • skip_box_thr: 置信度阈值,低于此值的框将被忽略
2.2 单模型应用示例
def example_wbf_1_model(iou_thr=0.55, draw_image=True):
    # 单模型预测结果
    boxes_list = [...]
    scores_list = [...]
    labels_list = [...]
    
    # 执行WBF
    boxes, scores, labels = weighted_boxes_fusion(
        [boxes_list], [scores_list], [labels_list], 
        weights=None, iou_thr=iou_thr, skip_box_thr=0.0
    )

单模型应用展示了WBF也可以用于单个模型的预测后处理,替代传统的NMS方法。

3. 传统NMS方法对比

项目还提供了与传统NMS方法的对比示例:

def example_nms_2_models(method, iou_thr=0.5, sigma=0.5, thresh=0.001, draw_image=True):
    # 定义预测数据...
    
    # 执行NMS融合
    boxes, scores, labels = nms_method(
        boxes_list, scores_list, labels_list,
        method=method, weights=weights, 
        iou_thr=iou_thr, sigma=sigma, thresh=thresh
    )

NMS方法参数说明:

  • method: NMS变种选择(1-标准NMS,2-软NMS,3-自适应NMS)
  • sigma: 软NMS的高斯衰减参数
  • thresh: 分数过滤阈值

技术要点解析

  1. WBF算法优势:

    • 保留更多真实目标,减少漏检
    • 通过加权平均产生更准确的边界框位置
    • 能够处理多模型预测结果的融合
  2. 坐标归一化处理: 所有边界框坐标都归一化为0-1之间的值,便于统一处理不同尺寸的图像

  3. 权重应用: 不同模型可以分配不同权重,影响最终融合结果。权重高的模型对最终结果影响更大

  4. 可视化技巧:

    • 边界框粗细反映置信度
    • 不同颜色区分不同模型和类别
    • 空白画布展示便于观察框的相对位置

实际应用建议

  1. 参数调优:

    • IOU阈值(iou_thr)需要根据具体数据集调整
    • 模型权重需要基于验证集表现分配
  2. 性能考量:

    • WBF计算量大于传统NMS,但精度提升明显
    • 对于实时性要求高的场景,可以适当提高skip_box_thr减少处理框数量
  3. 扩展应用:

    • 可用于多模型集成学习
    • 适用于多时期模型检查点的预测融合
    • 可扩展用于3D目标检测任务

总结

Weighted-Boxes-Fusion项目提供了一种先进的目标检测结果后处理方法,通过分析其示例代码,我们可以深入理解WBF算法的实现细节和应用场景。相比传统NMS,WBF能够更有效地保留真实目标并产生更准确的边界框位置,特别适合多模型集成的场景。在实际应用中,需要根据具体任务调整参数以获得最佳效果。

Weighted-Boxes-Fusion Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method. Weighted-Boxes-Fusion 项目地址: https://gitcode.com/gh_mirrors/we/Weighted-Boxes-Fusion

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俞淑瑜Sally

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值