SakanaAI/AI-Scientist项目:分层学习率对Grokking现象的影响研究

SakanaAI/AI-Scientist项目:分层学习率对Grokking现象的影响研究

AI-Scientist The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬 AI-Scientist 项目地址: https://gitcode.com/gh_mirrors/ai/AI-Scientist

引言

在深度学习模型训练过程中,学习率的选择对模型性能有着至关重要的影响。传统方法通常对所有层使用统一的学习率,但近年来,分层学习率策略逐渐受到关注。本文基于SakanaAI/AI-Scientist项目中的实验数据,深入探讨分层学习率对Transformer模型中Grokking现象的影响。

什么是Grokking现象?

Grokking是指神经网络在长时间训练后突然"顿悟"的现象,表现为验证准确率在经过一段时间的停滞或波动后突然大幅提升。这种现象在数学运算等任务中尤为常见。

实验设计

实验采用Transformer模型,在四种不同任务上进行测试:

  1. 除法运算(x_div_y)
  2. 减法运算(x_minus_y)
  3. 加法运算(x_plus_y)
  4. 排列组合(permutation)

实验对比了以下几种学习率配置方案:

基准测试(Run 0)

  • 统一学习率:所有层使用相同的学习率

分层学习率方案

  1. Run 1:激进分层

    • 嵌入层:1e-4
    • 底层Transformer:1e-3
    • 高层Transformer:1e-2
  2. Run 2:温和分层

    • 嵌入层:5e-4
    • 底层Transformer:1e-3
    • 高层Transformer:2e-3
  3. Run 3:优化分层

    • 嵌入层:7e-4
    • 底层Transformer:1.5e-3
    • 高层Transformer:3e-3
  4. Run 4:微调分层

    • 嵌入层:8e-4
    • 底层Transformer:2e-3
    • 高层Transformer:3e-3

实验结果分析

基准测试表现

基准测试中,模型在简单任务(x_div_y, x_minus_y, x_plus_y)上最终达到了100%的训练和验证准确率,但在复杂的permutation任务上表现不佳,验证准确率仅为3.6%。

分层学习率的影响

  1. 收敛速度

    • 所有分层学习率方案都显著加快了模型达到99%验证准确率的速度
    • 例如在x_div_y任务中,Run 1仅需906步,而基准测试需要4200步
  2. 最终性能

    • 激进分层(Run 1)虽然加速了收敛,但牺牲了最终准确率
    • 优化后的分层(Run 3)不仅保持了快速收敛,还提高了最终准确率
    • 在permutation任务中,Run 3将验证准确率从3.6%(基准)提升至99.95%
  3. 任务差异性

    • 简单运算任务对学习率变化相对稳健
    • 复杂任务(如permutation)对学习率配置更为敏感

关键发现

  1. 分层学习率能有效加速Grokking

    • 通过为不同层分配不同学习率,可以显著减少模型达到高准确率所需的训练步数
  2. 平衡是关键

    • 过于激进的分层(Run 1)会导致训练不稳定
    • 过于保守的分层(Run 2)无法充分发挥分层优势
    • Run 3找到了最佳平衡点
  3. 复杂任务受益更明显

    • 在permutation任务中,优化后的分层学习率带来了质的飞跃

最佳实践建议

基于实验结果,我们推荐以下分层学习率配置策略:

  1. 嵌入层

    • 使用中等偏低的学习率(7e-4至8e-4)
    • 这些层通常需要更稳定的更新
  2. 底层Transformer

    • 使用中等学习率(1.5e-3至2e-3)
    • 这些层负责基础特征提取
  3. 高层Transformer

    • 使用较高学习率(3e-3)
    • 这些层负责高级特征组合和输出

技术实现要点

在PyTorch中实现分层学习率,可以使用参数组(parameter groups)功能:

optimizer = torch.optim.Adam([
    {'params': model.embedding.parameters(), 'lr': 7e-4},
    {'params': model.transformer.layers[0].parameters(), 'lr': 1.5e-3},
    {'params': [*model.transformer.layers[1].parameters(), 
                *model.output.parameters()], 'lr': 3e-3}
])

结论

本研究通过系统实验验证了分层学习率策略在加速Grokking现象和提高模型性能方面的有效性。关键发现包括:

  1. 分层学习率可以显著加速模型收敛,减少达到高准确率所需的训练时间
  2. 经过优化的分层配置(Run 3)在保持快速收敛的同时,还能提高最终模型性能
  3. 复杂任务从分层学习率中获益更多,但需要更精细的调参

这些发现为深度学习模型的训练优化提供了有价值的实践指导,特别是在处理数学推理类任务时。未来的研究方向可以包括:

  • 动态调整分层学习率策略
  • 结合课程学习(curriculum learning)方法
  • 在更大规模模型上的适用性研究

AI-Scientist The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬 AI-Scientist 项目地址: https://gitcode.com/gh_mirrors/ai/AI-Scientist

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

申梦珏Efrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值