Vulkan Kompute 高级用法详解:从自定义操作到并行计算
kompute 项目地址: https://gitcode.com/gh_mirrors/vu/vulkan-kompute
Vulkan Kompute 是一个基于 Vulkan 的计算框架,它简化了 GPU 计算任务的开发流程。本文将深入探讨 Vulkan Kompute 的高级用法,帮助开发者充分利用 GPU 的计算能力。
自定义 Kompute 操作
在 Vulkan Kompute 中,开发者可以创建自定义操作来封装特定的计算逻辑。这种方式特别适合需要重复使用的计算模式。
实现自定义操作
自定义操作通过继承 OpAlgoDispatch
类来实现。下面是一个实现张量乘法的自定义操作示例:
class OpTensorMultiply : public OpAlgoDispatch {
public:
OpTensorMultiply(std::vector<std::shared_ptr<Tensor>> tensors,
std::shared_ptr<kp::Algorithm> algorithm)
: OpAlgoBase(algorithm)
{
if (tensors.size() != 3) {
throw std::runtime_error("需要3个张量,但提供了" + tensors.size());
}
std::vector<uint32_t> spirv = compileSource(R"(
#version 450
layout(set = 0, binding = 0) buffer tensorLhs {
float valuesLhs[];
};
layout(set = 0, binding = 1) buffer tensorRhs {
float valuesRhs[];
};
layout(set = 0, binding = 2) buffer tensorOutput {
float valuesOutput[];
};
layout (local_size_x = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
valuesOutput[index] = valuesLhs[index] * valuesRhs[index];
}
)");
algorithm->rebuild(tensors, spirv);
}
};
使用自定义操作
创建自定义操作后,可以像内置操作一样使用:
kp::Manager mgr;
auto tensorLhs = mgr.tensor({0., 1., 2.});
auto tensorRhs = mgr.tensor({2., 4., 6.});
auto tensorOut = mgr.tensor({0., 0., 0.});
mgr.sequence()
->record<kp::OpTensorSyncDevice>({tensorLhs, tensorRhs, tensorOut})
->record<OpTensorMultiply>({tensorLhs, tensorRhs, tensorOut}, mgr.algorithm())
->record<kp::OpTensorSyncLocal>({tensorOut})
->eval();
异步操作与等待机制
Vulkan Kompute 支持异步操作,允许在 GPU 执行计算的同时进行 CPU 端的其他工作。
基本异步流程
kp::Manager mgr;
auto tensor = mgr.tensor(10, 0.0);
// 同步数据到设备
mgr.sequence()->eval<kp::OpTensorSyncDevice>({tensor});
// 定义计算着色器
std::string shader = "..."; // 计算密集型着色器代码
// 异步执行计算
auto algo = mgr.algorithm({tensor}, compileSource(shader));
auto sq = mgr.sequence();
sq->evalAsync<kp::OpAlgoDispatch>(algo);
// 可以在这里执行其他CPU工作
// 等待GPU计算完成
sq->evalAwait();
// 同步结果回主机
sq->eval<kp::OpTensorSyncLocal>({tensor});
超时控制
evalAwait
方法可以指定超时时间(纳秒):
// 等待最多100毫秒
bool completed = sq->evalAwait(100000000);
if (!completed) {
// 处理超时情况
}
并行计算策略
Vulkan Kompute 支持通过多队列实现真正的并行计算,但需要注意硬件限制。
硬件队列特性
不同GPU厂商的队列实现差异很大:
- NVIDIA显卡通常有多个队列家族
- AMD显卡可能有不同的并行能力
- 集成显卡的并行能力通常较弱
并行计算实现
- 初始化多队列管理器:
// 选择设备0,使用家族0和家族2的队列
uint32_t deviceIndex = 0;
std::vector<uint32_t> familyIndices = {0, 2};
kp::Manager mgr(deviceIndex, familyIndices);
- 创建专用序列:
// 为每个队列创建专用序列
auto sqGraphics = mgr.sequence(0); // 使用第一个队列(图形家族)
auto sqCompute = mgr.sequence(1); // 使用第二个队列(计算家族)
- 并行执行任务:
// 准备数据
auto tensorA = mgr.tensor({...});
auto tensorB = mgr.tensor({...});
// 编译着色器
std::vector<uint32_t> spirv = compileSource("...");
// 创建算法
auto algoA = mgr.algorithm({tensorA}, spirv);
auto algoB = mgr.algorithm({tensorB}, spirv);
// 并行提交任务
sqGraphics->evalAsync<kp::OpAlgoDispatch>(algoA);
sqCompute->evalAsync<kp::OpAlgoDispatch>(algoB);
// 等待两个任务完成
sqGraphics->evalAwait();
sqCompute->evalAwait();
Vulkan 扩展支持
Vulkan Kompute 允许启用特定的 Vulkan 扩展,如原子浮点操作:
// 启用VK_EXT_shader_atomic_float扩展
kp::Manager mgr(0, {}, {"VK_EXT_shader_atomic_float"});
// 使用原子操作的着色器
std::string shader = R"(
#version 450
#extension GL_EXT_shader_atomic_float: enable
layout(binding = 0) buffer b { float pb[]; };
void main() {
atomicAdd(pb[0], 1.0);
}
)";
// 创建张量和算法
auto tensor = mgr.tensor({0.0});
auto algo = mgr.algorithm({tensor}, compileSource(shader));
// 执行计算
mgr.sequence()
->record<kp::OpTensorSyncDevice>({tensor})
->record<kp::OpAlgoDispatch>(algo)
->record<kp::OpTensorSyncLocal>({tensor})
->eval();
性能优化建议
-
队列选择策略:
- 测试不同队列组合的性能
- 避免在单个队列家族中创建过多队列
- 考虑使用专用传输队列进行数据拷贝
-
内存管理:
- 重用张量对象减少内存分配
- 对大张量使用设备本地内存
- 考虑使用内存屏障优化数据流
-
着色器优化:
- 尽量使用向量化操作
- 合理设置工作组大小
- 利用共享内存减少全局内存访问
通过掌握这些高级技术,开发者可以充分发挥 Vulkan Kompute 的潜力,构建高效的 GPU 计算应用。
kompute 项目地址: https://gitcode.com/gh_mirrors/vu/vulkan-kompute
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考