开源项目教程:机器学习速查表
1. 项目的目录结构及介绍
machine-learning-cheat-sheet/
├── README.md
├── LICENSE
├── data/
│ ├── dataset1.csv
│ └── dataset2.csv
├── notebooks/
│ ├── example1.ipynb
│ └── example2.ipynb
├── src/
│ ├── main.py
│ ├── config.py
│ └── utils.py
└── docs/
├── installation.md
└── usage.md
- README.md: 项目介绍和使用说明。
- LICENSE: 项目许可证。
- data/: 存放数据集文件。
- notebooks/: 存放Jupyter Notebook示例。
- src/: 存放源代码文件。
- docs/: 存放项目文档。
2. 项目的启动文件介绍
在 src/
目录下,main.py
是项目的启动文件。它包含了项目的主要功能和入口点。
# src/main.py
import config
from utils import load_data, train_model, save_model
def main():
# 加载配置
cfg = config.load_config()
# 加载数据
data = load_data(cfg['data_path'])
# 训练模型
model = train_model(data, cfg['model_params'])
# 保存模型
save_model(model, cfg['model_path'])
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
在 src/
目录下,config.py
是项目的配置文件。它包含了项目的各种配置参数。
# src/config.py
import json
def load_config(config_path='config.json'):
with open(config_path, 'r') as f:
config = json.load(f)
return config
# 示例配置文件内容
# config.json
{
"data_path": "data/dataset1.csv",
"model_params": {
"learning_rate": 0.01,
"epochs": 100
},
"model_path": "models/trained_model.pkl"
}
配置文件 config.json
包含了数据路径、模型参数和模型保存路径等配置信息。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考