DEAP库中的粒子群优化(PSO)基础教程
粒子群优化算法简介
粒子群优化(PSO)是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群的社会行为。在PSO算法中,候选解被称为"粒子",这些粒子在搜索空间中移动,通过简单的数学公式调整它们的位置和速度。每个粒子都会记住自己找到的最佳位置,同时也会获知群体中其他粒子找到的最佳位置,从而引导整个群体向最优解方向移动。
DEAP库中的PSO实现
DEAP(分布式进化算法框架)是一个强大的Python库,提供了实现各种进化算法的工具。在DEAP中实现PSO算法非常直观,下面我们将详细解析其实现过程。
模块导入
首先需要导入必要的模块:
import random
import numpy
from deap import base
from deap import creator
from deap import tools
这些模块提供了创建粒子、定义适应度函数和实现算法所需的基础设施。
粒子表示
在DEAP中,粒子被表示为一个具有多个属性的对象:
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Particle", list, fitness=creator.FitnessMax,
speed=list, smin=None, smax=None, best=None)
这里我们定义了两个重要对象:
FitnessMax
:表示最大化适应度函数Particle
:表示粒子,包含以下属性:fitness
:粒子的适应度值speed
:粒子在各维度上的速度smin
和smax
:速度的最小和最大值限制best
:粒子迄今为止找到的最佳位置
粒子初始化
每个粒子需要初始化其位置和速度:
def generate(size, pmin, pmax, smin, smax):
part = creator.Particle(random.uniform(pmin, pmax) for _ in range(size))
part.speed = [random.uniform(smin, smax) for _ in range(size)]
part.smin = smin
part.smax = smax
return part
这个函数创建一个新粒子,随机初始化其位置和速度,并设置速度限制。
粒子更新
PSO的核心是更新粒子的速度和位置:
def updateParticle(part, best, phi1, phi2):
u1 = (random.uniform(0, phi1) for _ in range(len(part)))
u2 = (random.uniform(0, phi2) for _ in range(len(part)))
v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part))
v_u2 = map(operator.mul, u2, map(operator.sub, best, part))
part.speed = list(map(operator.add, part.speed, map(operator.add, v_u1, v_u2)))
for i, speed in enumerate(part.speed):
if speed < part.smin:
part.speed[i] = part.smin
elif speed > part.smax:
part.speed[i] = part.smax
part[:] = list(map(operator.add, part, part.speed))
更新规则考虑了三个因素:
- 粒子当前速度
- 粒子自身历史最佳位置的影响
- 群体最佳位置的影响
算法配置
将上述组件注册到工具箱中:
toolbox = base.Toolbox()
toolbox.register("particle", generate, size=2, pmin=-100, pmax=100, smin=-50, smax=50)
toolbox.register("population", tools.initRepeat, list, toolbox.particle)
toolbox.register("update", updateParticle, phi1=2.0, phi2=2.0)
toolbox.register("evaluate", benchmarks.h1)
这里我们配置了:
- 粒子生成参数
- 种群初始化方法
- 粒子更新参数
- 评估函数(使用DEAP内置的h1测试函数)
主算法流程
完整的PSO算法实现如下:
def main():
pop = toolbox.population(n=5)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
GEN = 1000
best = None
for g in range(GEN):
for part in pop:
part.fitness.values = toolbox.evaluate(part)
if not part.best or part.best.fitness < part.fitness:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
if not best or best.fitness < part.fitness:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best)
logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
print(logbook.stream)
return pop, logbook, best
算法流程包括:
- 初始化种群
- 设置统计工具
- 主循环:
- 评估每个粒子
- 更新个体最佳位置
- 更新群体最佳位置
- 更新粒子速度和位置
- 记录统计信息
算法可视化
当运行这个PSO实现时,可以观察到粒子逐渐向最优解聚集的过程。最佳解(用红点表示)会引导整个群体向搜索空间中最有希望的区域移动。
应用建议
PSO算法特别适合解决以下类型的问题:
- 连续优化问题
- 非线性问题
- 多峰函数优化
- 高维优化问题
通过调整参数如群体大小、速度限制和学习因子(phi1和phi2),可以平衡算法的探索和开发能力,获得更好的优化性能。
参考文献
- Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization an overview. Swarm Intelligence, 1(1), 33-57.
- Knoek van Soest, A. J., & Casius, L. J. R. (2003). The merits of a parallel genetic algorithm in solving hard optimization problems. Journal of Biomechanical Engineering, 125(1), 141-146.
DEAP库提供了灵活的工具来实现和扩展PSO算法,使其成为研究和应用群体智能算法的强大平台。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考