DEAP库中的粒子群优化(PSO)基础教程

DEAP库中的粒子群优化(PSO)基础教程

粒子群优化算法简介

粒子群优化(PSO)是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群的社会行为。在PSO算法中,候选解被称为"粒子",这些粒子在搜索空间中移动,通过简单的数学公式调整它们的位置和速度。每个粒子都会记住自己找到的最佳位置,同时也会获知群体中其他粒子找到的最佳位置,从而引导整个群体向最优解方向移动。

DEAP库中的PSO实现

DEAP(分布式进化算法框架)是一个强大的Python库,提供了实现各种进化算法的工具。在DEAP中实现PSO算法非常直观,下面我们将详细解析其实现过程。

模块导入

首先需要导入必要的模块:

import random
import numpy

from deap import base
from deap import creator
from deap import tools

这些模块提供了创建粒子、定义适应度函数和实现算法所需的基础设施。

粒子表示

在DEAP中,粒子被表示为一个具有多个属性的对象:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Particle", list, fitness=creator.FitnessMax, 
               speed=list, smin=None, smax=None, best=None)

这里我们定义了两个重要对象:

  1. FitnessMax:表示最大化适应度函数
  2. Particle:表示粒子,包含以下属性:
    • fitness:粒子的适应度值
    • speed:粒子在各维度上的速度
    • sminsmax:速度的最小和最大值限制
    • best:粒子迄今为止找到的最佳位置

粒子初始化

每个粒子需要初始化其位置和速度:

def generate(size, pmin, pmax, smin, smax):
    part = creator.Particle(random.uniform(pmin, pmax) for _ in range(size)) 
    part.speed = [random.uniform(smin, smax) for _ in range(size)]
    part.smin = smin
    part.smax = smax
    return part

这个函数创建一个新粒子,随机初始化其位置和速度,并设置速度限制。

粒子更新

PSO的核心是更新粒子的速度和位置:

def updateParticle(part, best, phi1, phi2):
    u1 = (random.uniform(0, phi1) for _ in range(len(part)))
    u2 = (random.uniform(0, phi2) for _ in range(len(part)))
    v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part))
    v_u2 = map(operator.mul, u2, map(operator.sub, best, part))
    part.speed = list(map(operator.add, part.speed, map(operator.add, v_u1, v_u2)))
    for i, speed in enumerate(part.speed):
        if speed < part.smin:
            part.speed[i] = part.smin
        elif speed > part.smax:
            part.speed[i] = part.smax
    part[:] = list(map(operator.add, part, part.speed))

更新规则考虑了三个因素:

  1. 粒子当前速度
  2. 粒子自身历史最佳位置的影响
  3. 群体最佳位置的影响

算法配置

将上述组件注册到工具箱中:

toolbox = base.Toolbox()
toolbox.register("particle", generate, size=2, pmin=-100, pmax=100, smin=-50, smax=50)
toolbox.register("population", tools.initRepeat, list, toolbox.particle)
toolbox.register("update", updateParticle, phi1=2.0, phi2=2.0)
toolbox.register("evaluate", benchmarks.h1)

这里我们配置了:

  • 粒子生成参数
  • 种群初始化方法
  • 粒子更新参数
  • 评估函数(使用DEAP内置的h1测试函数)

主算法流程

完整的PSO算法实现如下:

def main():
    pop = toolbox.population(n=5)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    logbook = tools.Logbook()
    logbook.header = ["gen", "evals"] + stats.fields
    
    GEN = 1000
    best = None
    
    for g in range(GEN):
        for part in pop:
            part.fitness.values = toolbox.evaluate(part)
            if not part.best or part.best.fitness < part.fitness:
                part.best = creator.Particle(part)
                part.best.fitness.values = part.fitness.values
            if not best or best.fitness < part.fitness:
                best = creator.Particle(part)
                best.fitness.values = part.fitness.values
        for part in pop:
            toolbox.update(part, best)
        
        logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
        print(logbook.stream)
    
    return pop, logbook, best

算法流程包括:

  1. 初始化种群
  2. 设置统计工具
  3. 主循环:
    • 评估每个粒子
    • 更新个体最佳位置
    • 更新群体最佳位置
    • 更新粒子速度和位置
    • 记录统计信息

算法可视化

当运行这个PSO实现时,可以观察到粒子逐渐向最优解聚集的过程。最佳解(用红点表示)会引导整个群体向搜索空间中最有希望的区域移动。

应用建议

PSO算法特别适合解决以下类型的问题:

  • 连续优化问题
  • 非线性问题
  • 多峰函数优化
  • 高维优化问题

通过调整参数如群体大小、速度限制和学习因子(phi1和phi2),可以平衡算法的探索和开发能力,获得更好的优化性能。

参考文献

  1. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization an overview. Swarm Intelligence, 1(1), 33-57.
  2. Knoek van Soest, A. J., & Casius, L. J. R. (2003). The merits of a parallel genetic algorithm in solving hard optimization problems. Journal of Biomechanical Engineering, 125(1), 141-146.

DEAP库提供了灵活的工具来实现和扩展PSO算法,使其成为研究和应用群体智能算法的强大平台。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时翔辛Victoria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值