机器学习评估模型性能:mlr项目实战指南
前言
在机器学习项目中,模型性能评估是至关重要的环节。mlr作为R语言中强大的机器学习框架,提供了全面且灵活的模型评估功能。本文将深入讲解如何使用mlr进行模型性能评估,涵盖各类学习任务的评估指标及其应用场景。
性能评估指标概述
mlr支持多种学习任务的性能评估指标,每种任务类型都有其特定的评估标准:
分类任务常用指标
- 平均误分类错误率(mmce)
- 准确率(acc)
- 基于ROC分析的指标(AUC等)
回归任务常用指标
- 均方误差(mse)
- 平均绝对误差(mae)
其他任务指标
- 聚类任务:邓恩指数(G1 index)
- 生存分析:一致性指数(cindex)
- 成本敏感预测:误分类惩罚(mcp)
此外,mlr还支持记录训练时间(timetrain)、预测时间(timepredict)等辅助指标。
指标查询与选择
mlr提供了便捷的指标查询功能:
# 查询多分类任务的可用指标
listMeasures("classif", properties = "classif.multi")
# 查询iris数据集任务的适用指标
listMeasures(iris.task)
每个任务类型都有默认评估指标,可通过getDefaultMeasure()
函数获取:
# 获取iris任务的默认指标
getDefaultMeasure(iris.task)
# 获取线性回归的默认指标
getDefaultMeasure(makeLearner("regr.lm"))
性能评估实战
回归任务评估示例
以下示例展示如何在BostonHousing数据集上评估GBM模型的性能:
n = getTaskSize(bh.task)
lrn = makeLearner("regr.gbm", n.trees = 1000)
mod = train(lrn, task = bh.task, subset = seq(1, n, 2))
pred = predict(mod, task = bh.task, subset = seq(2, n, 2))
# 计算默认指标(均方误差)
performance(pred)
# 计算指定指标(中位数平方误差)
performance(pred, measures = medse)
# 同时计算多个指标
performance(pred, measures = list(mse, medse, mae))
聚类任务评估示例
聚类任务评估通常需要提供原始任务数据:
lrn = makeLearner("cluster.kmeans", centers = 3)
mod = train(lrn, mtcars.task)
pred = predict(mod, task = mtcars.task)
# 计算G1指数
performance(pred, measures = G1, task = mtcars.task)
分类任务特殊要求
某些分类指标需要特定类型的预测结果。例如AUC指标需要概率预测:
lrn = makeLearner("classif.rpart", predict.type = "prob")
mod = train(lrn, task = sonar.task)
pred = predict(mod, task = sonar.task)
performance(pred, measures = auc)
二元分类的进阶评估
二元分类任务有更丰富的评估方法。
阈值与性能关系分析
通过调整分类阈值,可以分析性能指标的变化:
lrn = makeLearner("classif.lda", predict.type = "prob")
n = getTaskSize(sonar.task)
mod = train(lrn, task = sonar.task, subset = seq(1, n, by = 2))
pred = predict(mod, task = sonar.task, subset = seq(2, n, by = 2))
# 生成阈值-性能数据
d = generateThreshVsPerfData(pred, measures = list(fpr, fnr, mmce))
# 绘制阈值-性能曲线
plotThreshVsPerf(d)
ROC综合评估
mlr提供了全面的ROC相关指标计算:
r = calculateROCMeasures(pred)
r
输出结果包含混淆矩阵及衍生指标,如:
- 真阳性率(TPR)
- 假阳性率(FPR)
- 精确率(Precision)
- 召回率(Recall)
- F1分数等
性能指标对象结构
每个性能指标都是Measure
类的对象,可以通过以下方式查看其结构:
# 查看平均误分类错误率的结构
str(mmce)
总结
mlr提供了全面而灵活的性能评估功能,支持:
- 多种学习任务的评估指标
- 自定义指标组合
- 二元分类的进阶分析
- 直观的性能可视化
掌握这些评估技术,将帮助您更全面地理解模型表现,为模型选择和优化提供可靠依据。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考