MMPretrain深度学习框架中的命名规范详解

MMPretrain深度学习框架中的命名规范详解

引言

在深度学习研究和工程实践中,规范的命名体系对于模型管理和团队协作至关重要。MMPretrain作为一款优秀的深度学习框架,建立了一套完善的命名规范体系。本文将全面解析MMPretrain框架中的模型、配置文件和权重文件的命名规则,帮助开发者更好地理解和使用这套规范。

模型命名规则解析

MMPretrain采用五段式结构为模型命名,各部分之间用下划线连接,同一部分内的多个单词用短横线连接。这种结构化的命名方式能够清晰表达模型的关键信息。

1. 算法信息(可选)

算法信息表示训练模型所使用的主要算法,常见的有:

  • 自监督学习算法:simclrmocov2
  • 视觉Transformer相关算法:eva-mae-style
  • 监督学习模型通常省略此部分

2. 模块信息(必需)

模块信息主要描述模型的核心架构:

  • CNN架构:resnet50resnet101
  • Transformer架构:vit-base-p16swin-base
  • 混合架构:convnext-base

其中p16表示patch大小为16×16像素,这是视觉Transformer架构特有的参数。

3. 预训练信息(可选)

对于基于预训练模型微调的模型,需要包含预训练相关信息:

  • 预训练方法:clipmae
  • 预训练数据集:in21k(ImageNet-21k)、laion2b
  • 预训练时长:300e(300个epoch)
  • 预训练来源:openaifb(Facebook)等
  • 必须以-pre结尾标识

4. 训练信息(必需)

详细记录训练配置和策略:

  • 硬件配置:8xb32(8个GPU,每个GPU batch size为32)
  • 训练类型:ft(微调)、pt(预训练)
  • 训练技巧组合:按应用顺序排列
    • 数据增强:autoaugmixup
    • 损失函数:lbs(label smoothing)
    • 学习率策略:coslr(cosine scheduler)
  • 训练时长:50e(50个epoch)
  • 第三方模型使用3rdparty标识

5. 数据信息(必需)

描述训练数据集和输入规格:

  • 数据集:in1k(ImageNet-1k)、cifar100
  • 输入尺寸:384px(384×384像素),默认224px可省略

实际案例解析

案例1:第三方转换的CLIP模型

vit-base-p32_clip-openai-pre_3rdparty_in1k

  • 架构:Vision Transformer基础版,patch大小32×32
  • 预训练:使用CLIP方法,来自OpenAI
  • 来源:第三方转换
  • 数据集:ImageNet-1k

案例2:BEiT预训练模型

beit_beit-base-p16_8xb256-amp-coslr-300e_in1k

  • 算法:BEiT
  • 架构:BEiT修改版ViT基础架构,patch16×16
  • 训练:8GPU×256batch,混合精度,cosine学习率,300epoch
  • 数据集:ImageNet-1k

配置文件命名规范

配置文件命名与模型命名基本一致,但有两点特殊:

  1. 必须包含完整的训练信息,不能使用3rdparty
  2. 仅包含主干网络的配置文件以_headless.py结尾

权重文件命名规则

权重文件命名包含模型名称、日期和哈希值: {model_name}_{date}-{hash}.pth

这种命名方式确保了权重文件的唯一性和可追溯性。

最佳实践建议

  1. 新模型开发时应严格遵循命名规范
  2. 各部分信息应简洁但充分
  3. 避免使用模糊或自定义的缩写
  4. 同一项目内保持命名风格一致
  5. 特殊情况下可在文档中补充说明

通过这套规范的命名体系,MMPretrain实现了模型信息的清晰表达和高效管理,为深度学习研究和工程实践提供了良好的基础。理解并正确应用这些规范,将有助于开发者更好地使用该框架进行工作。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晏惠娣Elijah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值