Tablesaw项目数据导入完全指南:从CSV到数据库

Tablesaw项目数据导入完全指南:从CSV到数据库

概述

Tablesaw作为一款高效的Java数据分析库,其数据导入功能是进行数据分析的第一步。本文将全面介绍Tablesaw支持的各种数据导入方式,包括CSV、JSON、Excel等常见格式,以及从数据库导入数据的技巧。

支持的数据格式

Tablesaw支持多种数据格式的导入和导出:

| 格式 | 导入 | 导出 | |---------------------|------|------| | CSV/分隔文本 | 支持 | 支持 | | JSON | 支持 | 支持 | | 关系数据库(JDBC) | 支持 | 不支持 | | 固定宽度文本 | 支持 | 支持 | | Excel | 支持 | 不支持 | | HTML表格 | 支持 | 支持 |

文本文件导入详解

基础CSV导入

最简单的CSV文件导入方式:

Table t = Table.read().file("myFile.csv");

此方法使用默认参数:逗号分隔、包含表头行。如需自定义参数,可使用CsvReadOptions构建器:

CsvReadOptions.Builder builder = 
    CsvReadOptions.builder("myFile.csv")
        .separator('\t')        // 使用制表符分隔
        .header(false)          // 无表头
        .dateFormat("yyyy.MM.dd"); // 日期格式

Table t1 = Table.read().usingOptions(builder.build());

列类型处理

Tablesaw会自动推断列类型,但有时需要手动指定:

ColumnType[] types = {LOCAL_DATE, INTEGER, FLOAT, FLOAT, CATEGORY};
Table t = Table.read().usingOptions(CsvReadOptions
    .builder("myFile.csv")
    .columnTypes(types));

手动指定类型有两个优势:

  1. 减少加载时间(跳过类型推断)
  2. 完全控制列类型

获取推断的列类型

对于多列文件,可以先生成类型推断结果:

String types = CsvReader.printColumnTypes("data/bush.csv", true, ','));

输出结果可直接用于代码中,包含列索引和名称注释。

跳过不需要的列

使用SKIP类型可跳过特定列:

ColumnType[] types = {SKIP, INTEGER, FLOAT, FLOAT, SKIP};

处理缺失值

Tablesaw默认将以下值视为缺失值:"NaN"、"*"、"NA"、"null"和空字符串""。可自定义缺失值标识:

.missingValueIndicator("-")

日期时间处理

处理不同地区的日期时间格式:

.locale(Locale.FRENCH)
.dateFormat("yyyy.MM.dd")
.timeFormat("HH:mm:ss")
.dateTimeFormat("yyyy.MM.dd::HH:mm:ss")

高级导入技术

流式API

使用InputStream实现更灵活的导入方式,适用于网络文件、S3等场景:

Table.read().csv(InputStream stream, String tableName);
从网站加载CSV
String location = "https://example.com/data.csv";
Table table = Table.read().usingOptions(CsvReadOptions.builder(new URL(location))
从S3加载CSV
S3Object object = s3Client.getObject(bucketName, key);
Table t = Table.read().usingOptions(CsvReadOptions.builder(object.getObjectContent()))

处理非UTF-8编码

InputStreamReader reader = new InputStreamReader(
    new FileInputStream("file.csv"), Charset.forName("ISO-8859-1"));
Table data = Table.read().usingOptions(CsvReadOptions.builder(reader, "table"));

数据库导入

从数据库查询结果导入数据:

Table t = Table.read().db(ResultSet resultSet, String tableName);

完整示例:

String DB_URL = "jdbc:derby:CoffeeDB;create=true";
Connection conn = DriverManager.getConnection(DB_URL);

try (Statement stmt = conn.createStatement();
     ResultSet results = stmt.executeQuery("SELECT * FROM Customer")) {
    Table customer = Table.read().db(results, "Customer");
}

其他格式导入

Tablesaw还支持HTML、JSON和Excel格式导入,需添加相应依赖:

  • tablesaw-html: HTML表格导入
  • tablesaw-json: JSON数据导入
  • tablesaw-excel: Excel文件导入

最佳实践

  1. 对于大型文件,预先指定列类型可显著提高加载速度
  2. 处理国际数据时,务必设置正确的Locale
  3. 从不可靠数据源导入时,先检查推断的列类型
  4. 考虑使用流式API处理远程或大文件数据

通过掌握这些导入技术,您可以为后续的数据分析工作奠定坚实基础。Tablesaw灵活的导入选项能够满足各种复杂场景的需求。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰书唯Elise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值