WeClone测试方案:test_model.py验证模型效果

WeClone测试方案:test_model.py验证模型效果

【免费下载链接】WeClone 欢迎star⭐。使用微信聊天记录微调大语言模型,并绑定到微信机器人,实现自己的数字克隆。 数字克隆/数字分身/LLM/大语言模型/微信聊天机器人/LoRA 【免费下载链接】WeClone 项目地址: https://gitcode.com/GitHub_Trending/we/WeClone

概述

在WeClone项目中,test_model.py是验证微调后大语言模型效果的核心测试工具。本文将深入解析该测试脚本的实现原理、使用方法和优化策略,帮助开发者全面掌握模型验证的最佳实践。

测试架构设计

核心组件

mermaid

配置文件结构

config = {
    'default_prompt': default_prompt,  # 默认系统提示词
    'model': 'gpt-3.5-turbo',         # 模型名称
    'history_len': 15,                # 历史对话长度限制
}

测试数据设计

测试问题分类

类别问题数量示例问题测试目的
日常对话5"吃了吗?", "吃的什么啊"基础对话能力
个人信息3"你多大了?", "有什么爱好"个性化回复
兴趣偏好8电影、音乐、读书等偏好一致性
生活习惯6运动、周末活动等行为模式
社交互动4朋友聚会、社交媒体社交能力
专业技能3语言、科技、DIY知识广度
休闲娱乐8游戏、摄影、旅游等娱乐倾向

多轮对话测试

测试数据采用多轮对话结构,每个测试用例包含2-5个连续问题:

[
    "你喜欢看什么类型的电影?",
    "最近看过什么好看的电影吗?",
    "你最喜欢的电影是什么?"
]

这种设计能够测试模型的对话连贯性和上下文理解能力。

核心实现解析

消息处理器函数

def handler_text(content: str, history: [], config):
    # 构建消息结构
    messages = [{"role": "system", "content": f'{config.default_prompt}'}]
    
    # 添加历史对话
    for item in history:
        messages.append(item)
    
    # 添加当前用户消息
    messages.append({"role": "user", "content": content})
    history.append({"role": "user", "content": content})
    
    try:
        # 调用API接口
        response = openai.ChatCompletion.create(
            model=config.model,
            messages=messages,
            max_tokens=50
        )
    except openai.APIError as e:
        history.pop()
        return 'AI接口出错,请重试\n' + str(e)

    # 处理响应结果
    resp = str(response.choices[0].message.content)
    resp = resp.replace('\n ', '')
    history.append({"role": "assistant", "content": resp})
    return resp

主测试流程

def main():
    # 加载测试数据
    test_list = json.loads(open('data/test_data.json').read())['questions']
    res = []
    
    # 遍历所有测试用例
    for questions in tqdm(test_list, desc=' Testing...'):
        history = []
        # 执行多轮对话
        for q in questions:
            answer = handler_text(q, history=history, config=config)
        res.append(history)
    
    # 保存测试结果
    res_file = open('test_result-my.txt', 'w')
    for r in res:
        for i in r:
            res_file.write(i['content'] + '\n')
        res_file.write('\n')

测试配置详解

API配置参数

参数默认值说明优化建议
modelgpt-3.5-turbo使用的模型根据实际部署调整
max_tokens50最大生成token数可根据对话复杂度调整
api_basehttp://127.0.0.1:8000/v1API地址支持本地和远程部署

提示词模板

default_prompt = "请你扮演一名人类,不要说自己是人工智能"

这个提示词确保模型以人类身份进行对话,避免暴露AI身份。

测试执行流程

环境准备

  1. 启动API服务
python ./src/api_service.py
  1. 执行测试脚本
python ./src/test_model.py

输出结果分析

测试结果保存在test_result-my.txt文件中,格式如下:

用户: 吃了吗?
AI: 吃了,刚吃完饭
用户: 吃的什么啊  
AI: 吃的米饭和几个菜
用户: 好吃吗
AI: 还不错,家常菜的味道

性能优化策略

批量测试优化

# 可优化的批量测试版本
def batch_test(test_cases, batch_size=5):
    results = []
    for i in range(0, len(test_cases), batch_size):
        batch = test_cases[i:i+batch_size]
        # 并行处理批量测试
        batch_results = process_batch(batch)
        results.extend(batch_results)
    return results

缓存机制

# 添加对话缓存避免重复计算
from functools import lru_cache

@lru_cache(maxsize=1000)
def cached_handler(content: str, history_hash: str):
    # 使用历史对话的哈希值作为缓存键
    return handler_text(content, history, config)

测试指标评估

定量评估指标

指标计算公式说明
响应时间平均处理时间衡量性能
对话连贯性上下文相关度评估连贯性
回复质量人工评分主观评价
错误率错误响应数/总请求数稳定性

定性评估方法

  1. 人工审核:逐条检查回复的自然度和合理性
  2. 一致性检查:验证相同问题的回复一致性
  3. 边界测试:测试极端和异常输入的处理能力

常见问题排查

API连接问题

# 增强的错误处理
try:
    response = openai.ChatCompletion.create(
        model=config.model,
        messages=messages,
        max_tokens=50,
        timeout=30  # 添加超时设置
    )
except openai.APIError as e:
    logging.error(f"API调用失败: {e}")
    return f"服务暂时不可用,请稍后重试"
except requests.exceptions.Timeout:
    logging.error("请求超时")
    return "请求超时,请检查网络连接"

结果解析优化

# 增强的结果处理
def process_response(response):
    if not response or 'choices' not in response:
        return "无法生成回复"
    
    content = response.choices[0].message.content
    # 清理多余空格和换行
    content = re.sub(r'\s+', ' ', content).strip()
    return content

扩展测试方案

自动化测试框架

class ModelTester:
    def __init__(self, config_path='settings.json'):
        self.config = self.load_config(config_path)
        self.test_cases = self.load_test_cases()
    
    def run_comprehensive_test(self):
        results = {
            'performance': self.test_performance(),
            'accuracy': self.test_accuracy(),
            'consistency': self.test_consistency()
        }
        return results
    
    def generate_test_report(self, results):
        # 生成详细的测试报告
        pass

多模型对比测试

def compare_models(models, test_cases):
    results = {}
    for model_name in models:
        config.model = model_name
        results[model_name] = run_test_suite(test_cases)
    return results

最佳实践建议

  1. 定期测试:每次模型更新后都应执行完整测试
  2. 多样化数据:不断丰富测试数据集覆盖更多场景
  3. 性能监控:建立长期的性能监控体系
  4. 结果归档:保存历史测试结果便于对比分析

通过test_model.py的全面测试,开发者可以确保WeClone项目的数字克隆模型在各种对话场景下都能提供自然、连贯且符合预期的回复,为用户提供高质量的数字分身体验。

【免费下载链接】WeClone 欢迎star⭐。使用微信聊天记录微调大语言模型,并绑定到微信机器人,实现自己的数字克隆。 数字克隆/数字分身/LLM/大语言模型/微信聊天机器人/LoRA 【免费下载链接】WeClone 项目地址: https://gitcode.com/GitHub_Trending/we/WeClone

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值