WeClone测试方案:test_model.py验证模型效果
概述
在WeClone项目中,test_model.py
是验证微调后大语言模型效果的核心测试工具。本文将深入解析该测试脚本的实现原理、使用方法和优化策略,帮助开发者全面掌握模型验证的最佳实践。
测试架构设计
核心组件
配置文件结构
config = {
'default_prompt': default_prompt, # 默认系统提示词
'model': 'gpt-3.5-turbo', # 模型名称
'history_len': 15, # 历史对话长度限制
}
测试数据设计
测试问题分类
类别 | 问题数量 | 示例问题 | 测试目的 |
---|---|---|---|
日常对话 | 5 | "吃了吗?", "吃的什么啊" | 基础对话能力 |
个人信息 | 3 | "你多大了?", "有什么爱好" | 个性化回复 |
兴趣偏好 | 8 | 电影、音乐、读书等 | 偏好一致性 |
生活习惯 | 6 | 运动、周末活动等 | 行为模式 |
社交互动 | 4 | 朋友聚会、社交媒体 | 社交能力 |
专业技能 | 3 | 语言、科技、DIY | 知识广度 |
休闲娱乐 | 8 | 游戏、摄影、旅游等 | 娱乐倾向 |
多轮对话测试
测试数据采用多轮对话结构,每个测试用例包含2-5个连续问题:
[
"你喜欢看什么类型的电影?",
"最近看过什么好看的电影吗?",
"你最喜欢的电影是什么?"
]
这种设计能够测试模型的对话连贯性和上下文理解能力。
核心实现解析
消息处理器函数
def handler_text(content: str, history: [], config):
# 构建消息结构
messages = [{"role": "system", "content": f'{config.default_prompt}'}]
# 添加历史对话
for item in history:
messages.append(item)
# 添加当前用户消息
messages.append({"role": "user", "content": content})
history.append({"role": "user", "content": content})
try:
# 调用API接口
response = openai.ChatCompletion.create(
model=config.model,
messages=messages,
max_tokens=50
)
except openai.APIError as e:
history.pop()
return 'AI接口出错,请重试\n' + str(e)
# 处理响应结果
resp = str(response.choices[0].message.content)
resp = resp.replace('\n ', '')
history.append({"role": "assistant", "content": resp})
return resp
主测试流程
def main():
# 加载测试数据
test_list = json.loads(open('data/test_data.json').read())['questions']
res = []
# 遍历所有测试用例
for questions in tqdm(test_list, desc=' Testing...'):
history = []
# 执行多轮对话
for q in questions:
answer = handler_text(q, history=history, config=config)
res.append(history)
# 保存测试结果
res_file = open('test_result-my.txt', 'w')
for r in res:
for i in r:
res_file.write(i['content'] + '\n')
res_file.write('\n')
测试配置详解
API配置参数
参数 | 默认值 | 说明 | 优化建议 |
---|---|---|---|
model | gpt-3.5-turbo | 使用的模型 | 根据实际部署调整 |
max_tokens | 50 | 最大生成token数 | 可根据对话复杂度调整 |
api_base | http://127.0.0.1:8000/v1 | API地址 | 支持本地和远程部署 |
提示词模板
default_prompt = "请你扮演一名人类,不要说自己是人工智能"
这个提示词确保模型以人类身份进行对话,避免暴露AI身份。
测试执行流程
环境准备
- 启动API服务
python ./src/api_service.py
- 执行测试脚本
python ./src/test_model.py
输出结果分析
测试结果保存在test_result-my.txt
文件中,格式如下:
用户: 吃了吗?
AI: 吃了,刚吃完饭
用户: 吃的什么啊
AI: 吃的米饭和几个菜
用户: 好吃吗
AI: 还不错,家常菜的味道
性能优化策略
批量测试优化
# 可优化的批量测试版本
def batch_test(test_cases, batch_size=5):
results = []
for i in range(0, len(test_cases), batch_size):
batch = test_cases[i:i+batch_size]
# 并行处理批量测试
batch_results = process_batch(batch)
results.extend(batch_results)
return results
缓存机制
# 添加对话缓存避免重复计算
from functools import lru_cache
@lru_cache(maxsize=1000)
def cached_handler(content: str, history_hash: str):
# 使用历史对话的哈希值作为缓存键
return handler_text(content, history, config)
测试指标评估
定量评估指标
指标 | 计算公式 | 说明 |
---|---|---|
响应时间 | 平均处理时间 | 衡量性能 |
对话连贯性 | 上下文相关度 | 评估连贯性 |
回复质量 | 人工评分 | 主观评价 |
错误率 | 错误响应数/总请求数 | 稳定性 |
定性评估方法
- 人工审核:逐条检查回复的自然度和合理性
- 一致性检查:验证相同问题的回复一致性
- 边界测试:测试极端和异常输入的处理能力
常见问题排查
API连接问题
# 增强的错误处理
try:
response = openai.ChatCompletion.create(
model=config.model,
messages=messages,
max_tokens=50,
timeout=30 # 添加超时设置
)
except openai.APIError as e:
logging.error(f"API调用失败: {e}")
return f"服务暂时不可用,请稍后重试"
except requests.exceptions.Timeout:
logging.error("请求超时")
return "请求超时,请检查网络连接"
结果解析优化
# 增强的结果处理
def process_response(response):
if not response or 'choices' not in response:
return "无法生成回复"
content = response.choices[0].message.content
# 清理多余空格和换行
content = re.sub(r'\s+', ' ', content).strip()
return content
扩展测试方案
自动化测试框架
class ModelTester:
def __init__(self, config_path='settings.json'):
self.config = self.load_config(config_path)
self.test_cases = self.load_test_cases()
def run_comprehensive_test(self):
results = {
'performance': self.test_performance(),
'accuracy': self.test_accuracy(),
'consistency': self.test_consistency()
}
return results
def generate_test_report(self, results):
# 生成详细的测试报告
pass
多模型对比测试
def compare_models(models, test_cases):
results = {}
for model_name in models:
config.model = model_name
results[model_name] = run_test_suite(test_cases)
return results
最佳实践建议
- 定期测试:每次模型更新后都应执行完整测试
- 多样化数据:不断丰富测试数据集覆盖更多场景
- 性能监控:建立长期的性能监控体系
- 结果归档:保存历史测试结果便于对比分析
通过test_model.py
的全面测试,开发者可以确保WeClone项目的数字克隆模型在各种对话场景下都能提供自然、连贯且符合预期的回复,为用户提供高质量的数字分身体验。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考