pycls图像分类框架入门指南:从安装到模型训练全流程
框架概述
pycls是一个基于PyTorch的图像分类框架,由Facebook Research团队开发。该框架提供了两种主要使用方式:作为预训练模型库直接调用,或作为完整的深度学习框架进行自定义模型训练。pycls特别擅长处理RegNet系列模型,提供了高效的训练和评估工具。
环境准备
硬件要求
- 必须使用GPU环境(目前不支持纯CPU运行)
- 推荐配置:PyTorch 1.6 + CUDA 9.2 + cuDNN 7.1
安装方式
作为模型库使用(快速开始)
pip install pycls
作为完整框架使用
- 获取代码库
- 安装依赖:
pip install -r requirements.txt
- 设置工具脚本权限:
chmod 744 ./tools/*.py
- 设置开发模式:
python setup.py develop --user
预训练模型使用
pycls提供了多种预训练模型,特别是RegNetX和RegNetY系列模型。这些模型可以直接加载用于推理或迁移学习。
基础模型加载
import pycls
# 加载预训练的RegNetX-400MF模型
model = pycls.models.regnetx("400MF", pretrained=True)
自定义类别数
# 创建100类的RegNetY-4.0GF模型(不加载预训练权重)
model = pycls.models.regnety("4.0GF", pretrained=False, cfg_list=("MODEL.NUM_CLASSES", 100))
完整框架使用指南
1. 模型信息查看
./tools/run_net.py --mode info \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml
2. 模型评估
./tools/run_net.py --mode test \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
TEST.WEIGHTS /path/to/model_weights.pyth \
OUT_DIR /tmp
3. 多节点评估(适用于大规模集群)
./tools/run_net.py --mode test \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
TEST.WEIGHTS /path/to/model_weights.pyth \
OUT_DIR test/ \
LOG_DEST file \
LAUNCH.MODE slurm \
LAUNCH.PARTITION devlab \
NUM_GPUS 16 \
LAUNCH.NAME pycls_eval_test
4. 模型训练
./tools/run_net.py --mode train \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
OUT_DIR /tmp
5. 模型微调
./tools/run_net.py --mode train \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
TRAIN.WEIGHTS /path/to/pretrained_weights.pyth \
OUT_DIR /tmp
6. 模型性能测试
./tools/run_net.py --mode time \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
NUM_GPUS 1 \
TRAIN.BATCH_SIZE 64 \
TEST.BATCH_SIZE 64 \
PREC_TIME.WARMUP_ITER 5 \
PREC_TIME.NUM_ITER 50
7. 模型缩放(高级功能)
./tools/run_net.py --mode scale \
--cfg configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml \
OUT_DIR ./ \
CFG_DEST "RegNetY-4.0GF_dds_8gpu_scaled.yaml" \
MODEL.SCALING_FACTOR 4.0 \
MODEL.SCALING_TYPE "d1_w8_g8_r1"
最佳实践建议
-
数据集准备:确保按照规范组织数据集,pycls对数据目录结构有特定要求
-
配置管理:所有训练参数都通过YAML配置文件管理,建议先复制默认配置再进行修改
-
资源利用:
- 单机多卡训练时合理设置batch size
- 大规模训练考虑使用多节点模式
-
模型选择:
- 轻量级任务:RegNetX-400MF
- 高性能需求:RegNetY-4.0GF及以上
-
监控训练:定期检查OUT_DIR中的日志文件和TensorBoard记录
常见问题
Q: 为什么我的训练速度很慢? A: 检查CUDA和cuDNN版本是否匹配,确保数据加载没有瓶颈
Q: 如何修改模型结构? A: 通过修改配置文件中的MODEL部分参数,或继承现有模型类进行扩展
Q: 评估时出现内存不足怎么办? A: 减小TEST.BATCH_SIZE参数值
pycls框架提供了强大的图像分类能力,特别适合需要高效训练和评估的场景。通过合理配置,可以快速实现从研究到生产的全流程图像分类任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考