scikit-learn-contrib/hdbscan 基础使用教程:高效聚类分析指南

scikit-learn-contrib/hdbscan 基础使用教程:高效聚类分析指南

什么是HDBSCAN算法

HDBSCAN(Hierarchical Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的层次聚类算法,它是对传统DBSCAN算法的改进和扩展。与DBSCAN相比,HDBSCAN具有以下优势:

  1. 自动确定最优聚类数量,无需预先指定
  2. 能够识别不同密度的簇
  3. 对噪声点有更好的处理能力
  4. 提供软聚类结果(概率分数)

基础使用流程

1. 准备数据

首先我们需要准备一些示例数据。这里我们使用scikit-learn的make_blobs函数生成一个包含2000个样本、10个特征的数据集:

from sklearn.datasets import make_blobs
import pandas as pd

blobs, labels = make_blobs(n_samples=2000, n_features=10)
pd.DataFrame(blobs).head()

这段代码会生成一个模拟数据集,并将其转换为pandas DataFrame格式以便查看。

2. 导入HDBSCAN并初始化聚类器

import hdbscan
clusterer = hdbscan.HDBSCAN()

默认情况下,HDBSCAN使用以下参数:

  • min_cluster_size=5:最小簇大小
  • metric='euclidean':使用欧几里得距离
  • alpha=1.0:控制簇合并的紧凑程度

3. 执行聚类

clusterer.fit(blobs)

4. 获取聚类结果

聚类完成后,我们可以通过以下属性获取结果:

# 获取聚类标签
labels = clusterer.labels_

# 获取聚类概率
probabilities = clusterer.probabilities_

聚类标签是一个整数数组,其中:

  • 相同数字表示属于同一簇
  • -1表示噪声点(不属于任何簇)
  • 数字从0开始,表示不同的簇

聚类概率则给出了每个点属于其分配簇的置信度,范围从0.0(完全不属于)到1.0(核心点)。

高级配置选项

1. 使用不同的距离度量

HDBSCAN支持多种距离度量方式,可以通过metric参数指定:

# 使用曼哈顿距离
clusterer = hdbscan.HDBSCAN(metric='manhattan')
clusterer.fit(blobs)

支持的度量方式包括但不限于:

  • 'euclidean':欧几里得距离(默认)
  • 'manhattan':曼哈顿距离
  • 'cosine':余弦距离
  • 'haversine':球面距离
  • 'precomputed':预计算距离矩阵

2. 使用预计算的距离矩阵

当数据不是简单的向量空间数据时,我们可以提供预计算的距离矩阵:

from sklearn.metrics.pairwise import pairwise_distances

distance_matrix = pairwise_distances(blobs)
clusterer = hdbscan.HDBSCAN(metric='precomputed')
clusterer.fit(distance_matrix)

注意:使用预计算距离时,必须确保矩阵是对称的,缺失值可以用numpy.inf表示。

3. 调整关键参数

HDBSCAN有几个重要参数可以调整:

clusterer = hdbscan.HDBSCAN(
    min_cluster_size=10,  # 最小簇大小
    min_samples=5,       # 核心点邻域所需最小点数
    alpha=0.5,          # 控制簇合并的紧凑程度
    metric='euclidean'   # 距离度量方式
)

结果分析与解释

1. 查看聚类统计

import numpy as np

# 获取簇数量(不包括噪声)
n_clusters = len(np.unique(labels[labels != -1]))

# 获取噪声点比例
noise_ratio = np.sum(labels == -1) / len(labels)

2. 理解软聚类结果

HDBSCAN提供的概率分数可以帮助我们:

  • 识别簇的核心区域(高概率点)
  • 发现簇边界的不确定区域(中等概率)
  • 明确区分噪声点(概率为0)

实际应用建议

  1. 数据预处理:HDBSCAN对数据尺度敏感,建议先进行标准化处理
  2. 参数调优min_cluster_size是最重要的参数,应根据业务需求调整
  3. 结果验证:结合可视化工具评估聚类质量
  4. 高维数据:考虑先使用降维技术处理高维数据

常见问题解答

Q:HDBSCAN与K-Means有何不同? A:HDBSCAN不需要预先指定簇数量,能识别任意形状的簇,且能处理噪声点,而K-Means需要指定K值,只能发现球形簇。

Q:如何处理大量噪声点? A:可以尝试增大min_cluster_size或调整min_samples参数,或者检查数据是否需要预处理。

Q:为什么我的所有点都被标记为噪声? A:通常是因为min_cluster_size设置过大或数据本身没有明显的簇结构。

通过本教程,您应该已经掌握了HDBSCAN的基础使用方法。在实际应用中,建议结合具体业务场景和数据特点进行参数调整和结果分析。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴驰欣Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值