PySR符号回归工具核心配置与功能详解

PySR符号回归工具核心配置与功能详解

概述

PySR是一个基于Julia后端的符号回归工具,它通过进化算法自动发现数据背后的数学表达式。本文将深入解析PySR的核心配置选项和功能特性,帮助用户更好地掌握这一强大工具的使用方法。

核心配置选项

1. 模型选择策略

PySR提供了两种模型选择策略:

  • model_selection='best'(默认):基于准确性和复杂度的平衡选择最佳模型
  • model_selection='accuracy':仅考虑准确性选择模型

在输出结果中,pick列会标识出被选中的模型。

2. 运算符配置

PySR支持丰富的运算符配置,包括:

  • 二元运算符:如加减乘除等基本运算
  • 一元运算符:如三角函数、对数等
  • 自定义运算符:用户可以定义自己的特殊运算符
PySRRegressor(
    binary_operators=["mult", "plus", "special(x, y) = x^2 + y"],
    extra_sympy_mappings={'special': lambda x, y: x**2 + y},
    unary_operators=["cos"]
)

3. 迭代参数控制

  • niterations:控制总迭代次数
  • ncycles_per_iteration:控制每次迭代中的循环次数,影响搜索多样性和效率

4. 并行计算配置

通过procs参数可以设置使用的CPU核心数,建议设置为可用核心数。

5. 种群设置

  • populations:控制种群数量,默认15个
  • 种群数量与核心数的关系:通常建议populations > procs

高级功能

1. 加权数据回归

PySR支持为数据点分配权重,适用于存在不同测量精度的情况:

sigma = ...  # 测量误差
weights = 1/sigma**2  # 权重计算
model = PySRRegressor()
model.fit(X, y, weights=weights)

2. 表达式复杂度控制

  • maxsize:限制表达式的最大大小(运算符、常数、变量的总数)
  • maxdepth:限制表达式的最大深度
  • warmupMaxsize:逐步增加maxsize,鼓励从简单表达式开始

3. 批量处理

对于大数据集,可以启用mini-batch处理:

  • batching=True:启用批量处理
  • batch_size:设置批量大小

4. 变量命名

可以通过两种方式指定变量名:

  1. 传递变量名列表
  2. 直接使用pandas DataFrame的列名

5. 运算符使用约束

可以限制特定运算符的使用方式:

constraints={
    'pow': (-1, 1),  # 幂运算的基和指数复杂度限制
    'mult': (3, 3),  # 乘法运算的左右操作数复杂度限制
    'cos': 5  # 余弦函数的参数复杂度限制
}

输出与导出功能

1. 数学表达式输出

PySR支持多种数学表达式输出格式:

  • LaTeX格式:model.latex()
  • SymPy表达式:model.sympy()
  • 可调用函数:model.equations_中的lambda_format

2. 深度学习框架导出

PySR支持将发现的表达式导出到主流深度学习框架:

PyTorch导出
torch_model = model.pytorch()
torch_output = torch_model(X_tensor)  # X_tensor是PyTorch张量
JAX导出
jax_model = model.jax()
jax_output = jax_model['callable'](X_array, jax_model['parameters'])

3. 自定义损失函数

PySR支持多种自定义损失函数:

# 绝对值损失
PySRRegressor(..., elementwise_loss="f(x, y) = abs(x - y)^1.5")

# 带权重的损失
model = PySRRegressor(..., elementwise_loss="myloss(x, y, w) = w * abs(x - y)")
model.fit(..., weights=weights)

# 内置Lp范数损失
PySRRegressor(..., elementwise_loss="LPDistLoss{3}()")

模型持久化

PySR自动保存模型状态:

  • 搜索开始前保存一次
  • 搜索完成后保存一次
  • 文件格式为.pkl

加载已保存模型:

model = PySRRegressor.from_file(pickle_filename)

最佳实践建议

  1. 对于大型数据集,启用batching可以显著提高性能
  2. 使用warmupMaxsize从简单表达式开始,逐步增加复杂度
  3. 合理设置constraints可以获得更可解释的表达式
  4. 多利用并行计算(procs)提高搜索效率
  5. 对于物理约束问题,使用运算符约束确保表达式符合物理规律

通过合理配置这些选项,用户可以充分发挥PySR的强大功能,从数据中发现有意义且可解释的数学表达式。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴驰欣Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值