Google Research语言项目:利用中间表示解锁预训练模型的组合泛化能力

Google Research语言项目:利用中间表示解锁预训练模型的组合泛化能力

language Shared repository for open-sourced projects from the Google AI Language team. language 项目地址: https://gitcode.com/gh_mirrors/lan/language

项目概述

Google Research语言项目中的compir模块专注于解决预训练模型在组合泛化(Compositional Generalization)方面的挑战。组合泛化是指模型能够理解并组合已知元素来应对新情况的能力,这是人类语言认知的核心特征,但却是当前神经网络的薄弱环节。

技术背景

在自然语言处理领域,预训练模型如T5虽然表现出色,但在处理需要组合性理解的复杂任务时仍存在局限。本项目通过引入中间表示(Intermediate Representations)这一创新方法,显著提升了模型在组合泛化任务上的表现。

核心创新

  1. 可逆中间表示(RIR): 保留原始程序所有信息的中间形式
  2. 有损中间表示(LIR): 通过简化结构提高泛化能力的中间形式
  3. 两阶段解码策略: 先转换为中间表示,再转换为目标程序

数据集支持

项目支持多个基准数据集,用于评估组合泛化能力:

CFQ数据集

  • 测量模型在组合查询理解方面的能力
  • 提供多种难度级别的分割

Text-to-SQL数据集

  • 包含ATIS、GeoQuery和Scholar子集
  • 评估模型将自然语言转换为SQL查询的能力

SCAN数据集

  • 专门设计用于测试组合泛化
  • 包含"turn left"和"length"等特定分割

使用方法

数据预处理

使用apply_transformation.py脚本将原始数据转换为中间表示:

python -m language.compir.transform.apply_transformation \
--transformation="rir" \
--dataset="cfq" \
--split="mcd1" \
--train_data_path="/path/to/train_data" \
--test_data_path="/path/to/test_data" \
--output_path="/output/directory"

支持多种转换类型:

  • rir: 可逆中间表示
  • lir: 有损中间表示
  • 带数字后缀的版本表示两阶段转换

模型评估

使用evaluate_predictions.py评估模型表现:

python -m language.compir.evaluate.evaluate_predictions \
--transformation="rir" \
--dataset="cfq" \
--train_data_path="/path/to/train_data" \
--test_data_path="/path/to/test_data" \
--prediction_path="/path/to/predictions"

T5模型微调

项目支持使用T5模型进行微调,处理TSV格式的中间表示数据。具体训练和预测流程遵循标准T5框架。

技术价值

  1. 提升泛化能力: 中间表示使模型能更好地处理未见过的组合
  2. 模块化设计: 分离语义理解和程序生成阶段
  3. 广泛适用性: 方法可应用于多种语义解析任务
  4. 可解释性: 中间表示提供了模型决策过程的更多洞察

应用场景

该方法特别适用于以下领域:

  • 复杂查询理解系统
  • 对话系统中的意图识别
  • 代码生成和程序合成
  • 跨领域语义解析任务

总结

Google Research的这一创新方法通过引入中间表示,有效解决了预训练模型在组合泛化方面的瓶颈问题。项目提供的工具链完整,从数据准备到模型评估的全流程都有详细支持,为研究者和开发者提供了强大的工具来构建更具组合泛化能力的NLP系统。

language Shared repository for open-sourced projects from the Google AI Language team. language 项目地址: https://gitcode.com/gh_mirrors/lan/language

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌宣广

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值