Tianshou项目中的离线强化学习实践指南
什么是离线强化学习
离线强化学习(Offline Reinforcement Learning)是一种特殊的强化学习范式,在这种模式下,智能体从一个固定的数据集中学习策略,而不再与环境进行交互。这与传统的在线强化学习形成鲜明对比,后者需要智能体不断与环境交互来收集新数据。
Tianshou项目提供了完整的离线强化学习实现,支持多种算法和应用场景。本文将详细介绍如何在Tianshou框架下进行离线强化学习实践。
连续控制任务实践
数据集准备
在连续控制任务中,Tianshou支持使用标准数据集进行训练。这些数据集通常包含状态、动作、奖励和下一状态等信息,格式统一便于使用。
算法实现
Tianshou目前实现了以下主流离线强化学习算法:
-
行为克隆(Behavior Cloning, BC):最简单的模仿学习方法,直接学习数据集中的状态-动作映射关系。
-
批量约束Q学习(BCQ):通过约束策略在数据集支持的动作附近选择动作,避免分布外动作带来的问题。
-
保守Q学习(CQL):通过正则化Q函数,使其在数据集外的状态-动作对上保持保守估计。
-
TD3+BC:结合TD3算法和行为克隆的正则项,在保持算法性能的同时避免策略偏离数据集分布。
训练流程
Tianshou提供了专门的offline_trainer
用于离线强化学习训练。基本流程如下:
- 加载数据集到
ReplayBuffer
- 初始化算法和策略
- 调用
offline_trainer
进行训练
性能表现
以下是Tianshou中不同算法在HalfCheetah环境下的表现对比:
| 算法类型 | 数据集类型 | 平均回报 | |---------|-----------|---------| | IL | expert | 11355.31| | IL | medium | 5098.16 | | BCQ | expert | 11509.95| | BCQ | medium | 5147.43 | | CQL | expert | 2864.37 | | CQL | medium | 6505.41 | | TD3+BC | expert | 11788.25| | TD3+BC | medium | 5741.13 |
状态归一化技巧
Tianshou实现了状态归一化功能,这对算法性能有稳定提升:
| 数据集 | 使用归一化 | 不使用归一化 | |-------|-----------|-------------| | medium| 5741.13 | 5724.41 | | expert| 11788.25 | 11665.77 |
离散控制任务实践
数据收集方法
对于Atari等离散控制任务,Tianshou提供了数据收集工具:
- 首先训练一个在线QRDQN智能体作为专家策略
- 使用该策略与环境交互收集数据,可加入噪声增加数据多样性
- 将收集的数据保存为ReplayBuffer格式
算法实现与比较
Tianshou在离散任务上实现了以下算法:
- 模仿学习(IL):直接学习专家数据中的策略
- BCQ:适用于离散动作空间的批量约束Q学习
- CQL:离散版本的保守Q学习
- CRR:Critic正则化回归算法
性能对比
以Pong和Breakout游戏为例:
Pong游戏表现:
| 算法 | 在线QRDQN | 行为策略 | 离线算法表现 | |-----|----------|----------|-------------| | IL | 20.5 | 6.8 | 20.0 | | BCQ | 20.5 | 6.8 | 20.1 | | CQL | 20.5 | 6.8 | 20.4 |
Breakout游戏表现:
| 算法 | 在线QRDQN | 行为策略 | 离线算法表现 | |-----|----------|----------|-------------| | IL | 394.3 | 46.9 | 121.9 | | BCQ | 394.3 | 46.9 | 64.6 | | CQL | 394.3 | 46.9 | 129.4 |
数据量影响
Tianshou还研究了数据量对算法性能的影响。结果显示,随着数据量减少,算法性能会相应下降,但CQL等算法在小数据量下仍能保持一定性能:
Breakout游戏(10%数据):
- CQL表现:40.8
Breakout游戏(1%数据):
- CQL表现:22.5
高级功能
RL Unplugged数据集支持
Tianshou提供了工具将RL Unplugged数据集转换为Tianshou的ReplayBuffer格式,方便研究者使用这些大规模离线数据集。
转换后的数据集可以直接用于训练:
python3 atari_bcq.py --task BreakoutNoFrameskip-v4 --load-buffer-name ~/.rl_unplugged/datasets/Breakout/run_1-00001-of-00100.hdf5 --buffer-from-rl-unplugged --epoch 12
实践建议
- 对于连续控制任务,TD3+BC通常是不错的首选算法
- 在数据量充足时,CQL在离散任务上表现优异
- 状态归一化虽然提升不大,但建议默认开启
- 数据质量对离线学习至关重要,收集数据时应注意多样性和覆盖度
通过Tianshou框架,研究者可以方便地实现和比较各种离线强化学习算法,加速相关研究和应用开发。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考