使用sunode与PyMC进行贝叶斯ODE建模快速入门
项目简介
sunode是一个专注于高效求解常微分方程(ODE)的Python库,特别针对贝叶斯统计建模中需要反复求解ODE的场景进行了优化。当与PyMC结合使用时,能够显著提升包含ODE的贝叶斯模型的采样效率。
环境配置
基础安装
推荐通过conda-forge渠道安装sunode:
conda create -n sunode-env
conda activate sunode-env
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install sunode
开发版安装
如需使用最新开发版本,可通过源码安装:
git clone 项目仓库地址
cd sunode
conda install --only-deps sunode
pip install -e .
注意:Windows平台需要安装兼容的Visual Studio版本。
核心功能演示:Lotka-Volterra模型
模型背景
我们将以生态学中经典的Lotka-Volterra捕食者-被捕食者模型为例:
dH/dt = αH - βLH
dL/dt = δLH - γL
其中H代表兔(被捕食者)数量,L代表猞猁(捕食者)数量。
数据准备
import numpy as np
times = np.arange(1900,1921,1)
lynx_data = np.array([...]) # 猞猁数量观测数据
hare_data = np.array([...]) # 兔子数量观测数据
ODE定义
def lotka_volterra(t, y, p):
return {
'hares': p.alpha * y.hares - p.beta * y.lynxes * y.hares,
'lynxes': p.delta * y.hares * y.lynxes - p.gamma * y.lynxes,
}
贝叶斯建模
- 先验分布设置:
with pm.Model() as model:
# 初始值先验
hares_start = pm.HalfNormal('hares_start', sigma=50)
lynx_start = pm.HalfNormal('lynx_start', sigma=50)
# 稳态比例参数
ratio = pm.Beta('ratio', alpha=0.5, beta=0.5)
# 周期参数
period = pm.Gamma('period', mu=10, sigma=1)
freq = pm.Deterministic('freq', 2 * np.pi / period)
# 推导ODE参数
alpha = pm.Deterministic('alpha', freq * speed_ratio * ratio)
beta = pm.Deterministic('beta', freq * speed_ratio / fixed_hares)
# ...其他参数类似推导
- ODE求解集成:
with model:
y0 = {'hares': (hares_start, ()), 'lynxes': (lynx_start, ())}
params = {'alpha': (alpha, ()), 'beta': (beta, ()), ...}
from sunode.wrappers.as_pytensor import solve_ivp
solution, *_ = solve_ivp(
y0=y0,
params=params,
rhs=lotka_volterra,
tvals=times,
t0=times[0]
)
- 似然函数定义:
with model:
pm.Deterministic('hares_mu', solution['hares'])
pm.Deterministic('lynxes_mu', solution['lynxes'])
sd = pm.HalfNormal('sd')
pm.LogNormal('hares', mu=solution['hares'], sigma=sd, observed=hare_data)
pm.LogNormal('lynxes', mu=solution['lynxes'], sigma=sd, observed=lynx_data)
模型采样
with model:
trace = pm.sample()
多链采样注意事项
由于当前版本暂不支持序列化ODE求解器,多链采样需注意:
- Linux系统默认支持
- Mac系统需设置:
import multiprocessing as mp mp.set_start_method('fork')
- Windows系统需设置
cores=1
技术优势解析
sunode的核心价值在于:
- 高效求解:针对小规模ODE的反复求解场景优化,减少Python层开销
- 自动微分:无缝支持PyMC的梯度采样方法
- 灵活集成:ODE参数可以是任意PyMC随机变量的函数
应用场景扩展
此方法不仅适用于生态学模型,还可应用于:
- 药物代谢动力学建模
- 疾病传播模型
- 化学反应动力学分析
- 任何需要ODE的贝叶斯推断场景
通过sunode与PyMC的结合,研究者可以构建更复杂的动态系统模型,同时保持高效的贝叶斯推断能力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考