使用sunode与PyMC进行贝叶斯ODE建模快速入门

使用sunode与PyMC进行贝叶斯ODE建模快速入门

项目简介

sunode是一个专注于高效求解常微分方程(ODE)的Python库,特别针对贝叶斯统计建模中需要反复求解ODE的场景进行了优化。当与PyMC结合使用时,能够显著提升包含ODE的贝叶斯模型的采样效率。

环境配置

基础安装

推荐通过conda-forge渠道安装sunode:

conda create -n sunode-env
conda activate sunode-env
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install sunode

开发版安装

如需使用最新开发版本,可通过源码安装:

git clone 项目仓库地址
cd sunode
conda install --only-deps sunode
pip install -e .

注意:Windows平台需要安装兼容的Visual Studio版本。

核心功能演示:Lotka-Volterra模型

模型背景

我们将以生态学中经典的Lotka-Volterra捕食者-被捕食者模型为例:

dH/dt = αH - βLH
dL/dt = δLH - γL

其中H代表兔(被捕食者)数量,L代表猞猁(捕食者)数量。

数据准备

import numpy as np
times = np.arange(1900,1921,1)
lynx_data = np.array([...])  # 猞猁数量观测数据
hare_data = np.array([...])  # 兔子数量观测数据

ODE定义

def lotka_volterra(t, y, p):
    return {
        'hares': p.alpha * y.hares - p.beta * y.lynxes * y.hares,
        'lynxes': p.delta * y.hares * y.lynxes - p.gamma * y.lynxes,
    }

贝叶斯建模

  1. 先验分布设置
with pm.Model() as model:
    # 初始值先验
    hares_start = pm.HalfNormal('hares_start', sigma=50)
    lynx_start = pm.HalfNormal('lynx_start', sigma=50)
    
    # 稳态比例参数
    ratio = pm.Beta('ratio', alpha=0.5, beta=0.5)
    
    # 周期参数
    period = pm.Gamma('period', mu=10, sigma=1)
    freq = pm.Deterministic('freq', 2 * np.pi / period)
    
    # 推导ODE参数
    alpha = pm.Deterministic('alpha', freq * speed_ratio * ratio)
    beta = pm.Deterministic('beta', freq * speed_ratio / fixed_hares)
    # ...其他参数类似推导
  1. ODE求解集成
with model:
    y0 = {'hares': (hares_start, ()), 'lynxes': (lynx_start, ())}
    params = {'alpha': (alpha, ()), 'beta': (beta, ()), ...}
    
    from sunode.wrappers.as_pytensor import solve_ivp
    solution, *_ = solve_ivp(
        y0=y0,
        params=params,
        rhs=lotka_volterra,
        tvals=times,
        t0=times[0]
    )
  1. 似然函数定义
with model:
    pm.Deterministic('hares_mu', solution['hares'])
    pm.Deterministic('lynxes_mu', solution['lynxes'])
    
    sd = pm.HalfNormal('sd')
    pm.LogNormal('hares', mu=solution['hares'], sigma=sd, observed=hare_data)
    pm.LogNormal('lynxes', mu=solution['lynxes'], sigma=sd, observed=lynx_data)

模型采样

with model:
    trace = pm.sample()

多链采样注意事项

由于当前版本暂不支持序列化ODE求解器,多链采样需注意:

  • Linux系统默认支持
  • Mac系统需设置:
    import multiprocessing as mp
    mp.set_start_method('fork')
    
  • Windows系统需设置cores=1

技术优势解析

sunode的核心价值在于:

  1. 高效求解:针对小规模ODE的反复求解场景优化,减少Python层开销
  2. 自动微分:无缝支持PyMC的梯度采样方法
  3. 灵活集成:ODE参数可以是任意PyMC随机变量的函数

应用场景扩展

此方法不仅适用于生态学模型,还可应用于:

  • 药物代谢动力学建模
  • 疾病传播模型
  • 化学反应动力学分析
  • 任何需要ODE的贝叶斯推断场景

通过sunode与PyMC的结合,研究者可以构建更复杂的动态系统模型,同时保持高效的贝叶斯推断能力。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱焰菲Wesley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值