Elasticsearch Learning to Rank 插件中的特征评分日志记录详解

Elasticsearch Learning to Rank 插件中的特征评分日志记录详解

什么是特征评分日志记录

在机器学习排序(Learning to Rank)系统中,特征评分日志记录是一个关键步骤。它允许我们捕获和存储各种搜索特征的实际计算值,这些值随后将用于训练排序模型。通过记录这些特征值,我们可以分析哪些特征对搜索结果的相关性预测最有帮助。

核心组件:sltr查询

sltr查询是Elasticsearch Learning to Rank插件中执行特征和评估模型的主要方式。在日志记录场景中,我们使用它来检索每个特征查询的评分结果。

特征集定义示例

假设我们为电影数据集定义了一个特征集:

PUT _ltr/_featureset/more_movie_features
{
    "name": "more_movie_features",
    "features": [
        {
            "name": "body_query",
            "params": ["keywords"],
            "template": {
                "match": {"overview": "{{keywords}}"}
            }
        },
        {
            "name": "title_query",
            "params": ["keywords"],
            "template": {
                "match": {"title": "{{keywords}}"}
            }
        }
    ]
}

这个特征集包含两个特征:基于电影概述(body)的匹配评分和基于标题(title)的匹配评分。

特征值记录的实际应用

场景一:与已有评判列表结合

当已有专家提供的评判列表时,我们需要为每个关键词-文档对记录特征值,形成完整的训练集。

  1. 构建过滤查询:限定只查询评判列表中包含的文档ID
  2. 添加sltr查询:指定要记录的特征集和参数
  3. 启用日志扩展:配置日志记录规范

完整请求示例:

POST tmdb/_search
{
    "query": {
        "bool": {
            "filter": [
                {"terms": {"_id": ["7555", "1370", "1369"]}},
                {
                    "sltr": {
                        "_name": "logged_featureset",
                        "featureset": "more_movie_features",
                        "params": {"keywords": "rambo"}
                    }
                }
            ]
        }
    },
    "ext": {
        "ltr_log": {
            "log_specs": {
                "name": "log_entry1",
                "named_query": "logged_featureset"
            }
        }
    }
}

响应中将包含每个文档的特征值,格式如下:

{
    "_ltrlog": [
        {
            "log_entry1": [
                {"name": "title_query", "value": 9.510193},
                {"name": "body_query", "value": 10.7808075}
            ]
        }
    ]
}

场景二:生产环境中的特征记录

在生产环境中,当模型通过sltr查询执行时,只需添加适当的日志规范即可记录特征值:

"ext": {
    "ltr_log": {
        "log_specs": {
            "name": "log_entry1",
            "rescore_index": 0
        }
    }
}

场景三:特征集修改后的记录

特征集可以动态扩展。例如添加用户评分特征:

PUT _ltr/_feature/user_rating/_addfeatures
{
    "features": [
        {
            "name": "user_rating",
            "params": [],
            "template": {
                "function_score": {
                    "functions": {"field": "vote_average"},
                    "query": {"match_all": {}}
                }
            }
        }
    ]
}

之后记录的特征值将包含新添加的特征。

场景四:实验性特征集的记录

可以创建全新的特征集用于实验:

PUT _ltr/_featureset/other_movie_features
{
    "name": "other_movie_features",
    "features": [
        {
            "name": "cast_query",
            "params": ["keywords"],
            "template": {"match": {"cast.name": "{{keywords}}"}}
        },
        {
            "name": "genre_query",
            "params": ["keywords"],
            "template": {"match": {"genres.name": "{{keywords}}"}}
        }
    ]
}

日志记录的实际应用场景

  1. 用户分析开发评判列表:记录用户交互时的精确特征值,用于后续相关性分析
  2. 模型更新维护:定期记录特征值以重新训练模型,应对数据分布变化
  3. 模型开发实验:在本地环境中迭代测试新特征,确定最佳模型参数

最佳实践建议

  1. 对于大型评判列表,使用批量搜索功能提高效率
  2. 实验性特征集应与生产特征集分开管理
  3. 定期记录生产环境特征值以监控模型性能变化
  4. 新特征添加后应进行充分的离线评估再部署到生产环境

通过合理利用特征评分日志记录功能,可以显著提升机器学习排序模型的开发效率和最终效果。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙双曙Janet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值