SynapseML回归模型快速入门:汽车价格预测实战

SynapseML回归模型快速入门:汽车价格预测实战

前言

在机器学习领域,回归分析是预测连续数值型变量的重要技术手段。本文将基于SynapseML这一强大的分布式机器学习库,通过一个汽车价格预测的实际案例,详细介绍回归模型的构建、训练和评估全流程。

数据集介绍

我们使用的数据集包含汽车的各种属性特征,目标是根据这些特征预测汽车的价格。数据集包含以下关键字段:

  • normalized-losses:标准化损失值
  • stroke:发动机冲程
  • bore:发动机孔径
  • horsepower:马力
  • peak-rpm:峰值转速
  • price:价格(目标变量)

数据预处理

1. 数据加载与探索

首先我们需要加载数据并了解其基本统计特征。SynapseML提供了SummarizeData工具,可以快速生成全面的数据统计报告:

from synapse.ml.stages import SummarizeData

summary = SummarizeData().transform(data)
summary.toPandas()

该报告包含每列数据的:

  • 计数统计(总数、唯一值数、缺失值数)
  • 分位数(最小值、第一四分位数、中位数等)
  • 样本统计(方差、标准差、偏度、峰度)
  • 百分位数(P0.5、P1、P5等)

2. 处理缺失值

数据中存在缺失值是常见问题。SynapseML的CleanMissingData模块提供了多种处理方式:

from synapse.ml.featurize import CleanMissingData

cols = ["normalized-losses", "stroke", "bore", "horsepower", "peak-rpm", "price"]
cleanModel = (CleanMissingData()
             .setCleaningMode("Median")
             .setInputCols(cols)
             .setOutputCols(cols))

支持的处理模式包括:

  • "Mean":用均值填充
  • "Median":用中位数填充(本例采用)
  • "Custom":自定义填充值

模型构建与训练

1. 数据分割

首先将数据分为训练集和测试集:

train, test = data.randomSplit([0.6, 0.4], seed=123)

2. 泊松回归模型

泊松回归适用于预测计数型数据,这里我们使用广义线性回归实现:

from pyspark.ml.regression import GeneralizedLinearRegression
from pyspark.ml import Pipeline
from synapse.ml.train import TrainRegressor

glr = GeneralizedLinearRegression(family="poisson", link="log")
poissonModel = TrainRegressor().setModel(glr).setLabelCol("price").setNumFeatures(256)
poissonPipe = Pipeline(stages=[cleanModel, poissonModel]).fit(train)
poissonPrediction = poissonPipe.transform(test)

3. 随机森林回归模型

随机森林是一种集成学习方法,对非线性关系有很好的捕捉能力:

from pyspark.ml.regression import RandomForestRegressor

rfr = RandomForestRegressor(maxDepth=30, maxBins=128, numTrees=8, minInstancesPerNode=1)
randomForestModel = TrainRegressor(model=rfr, labelCol="price", numFeatures=256).fit(train)
randomForestPipe = Pipeline(stages=[cleanModel, randomForestModel]).fit(train)
randomForestPrediction = randomForestPipe.transform(test)

模型评估

1. 整体评估指标

使用ComputeModelStatistics计算关键评估指标:

from synapse.ml.train import ComputeModelStatistics

poissonMetrics = ComputeModelStatistics().transform(poissonPrediction)
randomForestMetrics = ComputeModelStatistics().transform(randomForestPrediction)

主要指标包括:

  • 均方误差(MSE)
  • 均方根误差(RMSE)
  • R²决定系数
  • 平均绝对误差(MAE)

2. 实例级评估

ComputePerInstanceStatistics可以计算每个预测实例的误差:

from synapse.ml.train import ComputePerInstanceStatistics

def demonstrateEvalPerInstance(pred):
    return (ComputePerInstanceStatistics()
            .transform(pred)
            .select("price", "prediction", "L1_loss", "L2_loss")
            .limit(10)
            .toPandas())

模型选择与优化

在实际应用中,我们可以使用SynapseML的FindBestModel功能自动寻找最优模型和参数。虽然本例中我们手动比较了两个模型,但在生产环境中,自动化模型选择和调优可以显著提高效率。

总结

通过本教程,我们学习了:

  1. 使用SynapseML进行数据探索和预处理
  2. 构建和训练两种不同类型的回归模型
  3. 评估模型性能并比较结果
  4. 分析单个预测实例的准确性

SynapseML提供了丰富的机器学习工具链,使得在分布式环境下构建和评估回归模型变得简单高效。读者可以根据实际需求,尝试其他回归算法或调整模型参数,以获得更好的预测性能。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱含悦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值