MMGeneration项目快速入门指南:模型推理与训练全流程解析
概述
MMGeneration是一个功能强大的生成对抗网络(GAN)框架,支持多种主流生成模型,包括无条件GAN、条件GAN、图像翻译模型等。本文将详细介绍如何使用MMGeneration进行模型推理、训练和评估,帮助开发者快速上手这一框架。
模型推理实践
无条件GAN图像生成
无条件GAN能够根据随机噪声生成逼真图像。MMGeneration提供了简洁的API实现这一功能:
from mmgen.apis import init_model, sample_unconditional_model
# 初始化模型
config = 'configs/styleganv2/stylegan2_c2_ffhq_1024_b4x8.py'
checkpoint = 'path_to_checkpoint.pth'
model = init_model(config, checkpoint, device='cuda:0')
# 生成4张图像
generated_images = sample_unconditional_model(model, 4)
也可以通过命令行工具实现:
python demo/unconditional_demo.py configs/styleganv2/stylegan2_c2_ffhq_1024_b4x8.py path_to_checkpoint.pth
条件GAN图像生成
条件GAN能够根据类别标签生成特定类别的图像:
from mmgen.apis import init_model, sample_conditional_model
model = init_model(config, checkpoint, device='cuda:0')
# 随机生成不同类别的图像
images = sample_conditional_model(model, 4)
# 生成特定类别的图像
cat_images = sample_conditional_model(model, 4, label=0)
命令行工具支持更灵活的生成方式:
python demo/conditional_demo.py config_file checkpoint_file \
--label 0 1 2 3 \ # 指定生成类别
--samples-per-classes 5 # 每类生成5张
图像翻译模型应用
图像翻译模型如Pix2Pix可以实现图像风格转换:
from mmgen.apis import sample_img2img_model
model = init_model(config, checkpoint)
translated_img = sample_img2img_model(model, 'input.jpg', target_domain='photo')
命令行使用方式:
python demo/translation_demo.py config_file checkpoint_file input.jpg
数据集准备规范
无条件GAN数据集
无条件GAN只需要包含真实图像的文件夹结构:
data/celeba/
├── img1.jpg
├── img2.jpg
└── ...
建议使用符号链接组织数据集:
mkdir data
ln -s /path/to/dataset ./data/dataset_name
图像翻译数据集
- 配对数据集(如Pix2Pix):
data/edges2shoes/
├── train
│ └── paired_img_AB.jpg # 包含A和B域的拼接图像
└── test
└── paired_img_AB.jpg
- 非配对数据集(如CycleGAN):
data/horse2zebra/
├── trainA
│ └── horse1.jpg
├── trainB
│ └── zebra1.jpg
├── testA
│ └── horse2.jpg
└── testB
└── zebra2.jpg
模型训练指南
分布式训练
推荐使用分布式训练加速模型收敛:
# 常规环境
sh tools/dist_train.sh config_file 8 # 使用8块GPU
# Slurm集群环境
sh tools/slurm_train.sh partition job_name config_file work_dir
关键训练参数
--work-dir
: 指定工作目录保存日志和检查点--resume-from
: 从检查点恢复训练--no-validate
: 跳过验证阶段--seed
: 设置随机种子保证可复现性
CPU训练(仅限调试)
export CUDA_VISIBLE_DEVICES=-1
python tools/train.py config_file
注意:动态GAN不支持CPU训练,且训练速度较慢,仅建议用于调试。
模型评估方法
MMGeneration支持6种评估指标:MS-SSIM、SWD、IS、FID、Precision&Recall和PPL。
评估配置示例
在配置文件中添加metrics部分:
metrics = dict(
fid50k=dict(
type='FID',
num_images=50000,
inception_pkl='path_to_stats.pkl',
bgr2rgb=True))
执行评估
# 在线评估(不保存生成图像)
sh tools/dist_eval.sh config_file checkpoint_file 8 --online
# 离线评估(保存生成图像)
sh tools/dist_eval.sh config_file checkpoint_file 8 --samples-path outputs/
FID评估详解
FID是衡量生成图像质量的重要指标,MMGeneration提供两种实现:
- PyTorch版本:使用修改的InceptionV3网络
- Tero版本:使用TensorFlow InceptionV3(需PyTorch≥1.6)
提取真实图像特征的预处理:
python tools/utils/inception_stat.py \
--imgsdir real_images/ \
--pklname real_stats.pkl \
--size 256 # 图像尺寸
实用技巧
- 多GPU评估可显著加速FID和IS计算
- 使用
--eval none
可仅生成图像不计算指标 - 图像翻译评估需指定目标域:
python tools/utils/translation_eval.py config_file checkpoint_file --t photo
通过本指南,开发者可以快速掌握MMGeneration的核心功能,包括模型推理、训练和评估的全流程。该框架的模块化设计使得各种生成模型的实现和评估变得简单高效。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考