FlashInfer项目中的KV-Cache布局详解
引言
在大型语言模型(LLM)的推理过程中,KV-Cache(键值缓存)是提高推理效率的关键技术。FlashInfer作为一个高性能的推理加速库,提供了多种KV-Cache的存储布局方案。本文将深入解析FlashInfer中KV-Cache的各种布局方式及其适用场景。
KV-Cache基础布局:NHD与HND
FlashInfer提供了两种基础的KV-Cache三维布局方案:
- NHD布局:维度顺序为(序列长度, 头数, 头维度)
- HND布局:维度顺序为(头数, 序列长度, 头维度)
NHD布局更符合自然的数据组织方式,因为它与注意力机制中计算xW_k和xW_v的输出形状一致,无需转置操作。而HND布局在KV-Cache使用低精度数据类型(如fp8)时对GPU实现更友好。
实际测试表明,在fp16精度的KV-Cache上,这两种布局的性能差异不大。FlashInfer默认使用NHD布局以提高代码可读性,但同时也实现了两种布局的注意力计算内核,用户可根据需求选择。
不规则张量(Ragged Tensor)布局
在处理批量预填充(batch prefill)自注意力时,不同请求的序列长度可能各不相同。FlashInfer采用不规则张量来存储这些变长的Q/K/V张量。
数据结构设计
不规则张量将所有请求的Q/K/V数据打包到一个连续的data
张量中,不进行填充。同时使用一个indptr
数组(长度为请求数+1,首元素固定为0)来记录每个请求的序列长度信息:
indptr[i+1]-indptr[i]
表示第i个请求的序列长度data
张量的形状为(indptr[-1], num_heads, head_dim)
(NHD布局时)- 可通过
data[indptr[i]:indptr[i+1]]
切片获取第i个请求的键或值
重要提示:FlashInfer库中的所有indptr
数组必须使用int32类型,使用int64类型可能导致索引错误。
应用场景
这种布局特别适合处理批量请求中序列长度差异较大的场景,避免了传统填充方式造成的内存浪费和计算冗余。
掩码布局(2D不规则张量)
注意力掩码可以看作是二维不规则张量。当批量大小大于1时,不同请求可能有不同的查询长度和KV长度。
数据结构设计
FlashInfer使用两个数组来存储变长序列信息:
qo_indptr
:记录每个请求的查询长度kv_indptr
:记录每个请求的KV长度
所有请求的掩码数据被展平并连接成一个一维数组mask_data
。FlashInfer会隐式创建一个mask_indptr
数组来记录每个请求掩码的起始偏移量。
内存优化
为节省内存,FlashInfer支持将布尔掩码数组打包为位压缩数组(每个元素1bit,8个元素打包为1个uint8)。FlashInfer既接受原始布尔掩码,也接受位压缩掩码,如果提供布尔掩码,库会在内部自动进行位压缩。
页表布局(Page Table Layout)
在动态KV-Cache场景(如追加或解码阶段),将所有键值打包存储效率不高。FlashInfer借鉴了vLLM的思想,采用页表方式组织KV-Cache。
数据结构设计
页表可视为块稀疏矩阵,使用CSR格式索引KV-Cache中的页面。每个请求维护以下信息:
page_indices
:记录该请求使用的页面last_page_len
:记录最后一个页面中的有效条目数
请求i的KV序列长度为:page_size * (len(page_indices[i]) - 1) + last_page_length[i]
重要约束:每个请求的last_page_len
必须大于0且不超过page_size
。
存储方式
KV数据可以存储为单个5D张量或键值分离的4D张量元组。在NHD布局下:
- 单张量存储:
(max_num_pages, 2, page_size, num_heads, head_dim)
- 分离存储:
k_data
和v_data
形状均为(max_num_pages, page_size, num_heads, head_dim)
多级级联推理数据布局
在多级级联推理场景中,查询和输出存储在Ragged Tensor中,而所有级别的KV-Cache存储在统一的页式KV-Cache中。
设计特点
- 每个级别有独立的
qo_indptr
数组 - 所有级别共享相同的基础数据布局
- 通过不同的索引数组实现多级视图
这种设计允许在不同级别重用前缀,显著提高了推理效率。
常见问题解答
Q: FlashInfer如何管理KV-Cache?
A: FlashInfer本身不负责页表管理(如页面分配/回收等),这些策略由用户决定。FlashInfer专注于计算查询与KV-Cache中键值之间的注意力。
总结
FlashInfer提供了灵活多样的KV-Cache布局方案,从基础的NHD/HND布局到高级的页表布局和级联推理布局,满足了不同场景下的性能需求。理解这些布局的特点和适用场景,有助于开发者充分发挥FlashInfer的性能潜力,构建高效的推理系统。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考