MMDeploy项目:如何为模型部署添加新模型支持
前言
在深度学习模型部署过程中,经常会遇到模型无法直接转换为目标推理引擎格式的问题。MMDeploy提供了一套强大的工具集,帮助开发者解决模型转换中的各种兼容性问题。本文将详细介绍三种核心重写工具的使用方法,帮助开发者快速为MMDeploy添加新模型支持。
函数重写器(Function Rewriter)
基本概念
函数重写器是MMDeploy中最常用的工具之一,它允许开发者在模型转换过程中动态替换不支持的Python函数。这种机制类似于"猴子补丁"(monkey patch),但更加结构化且针对特定后端引擎。
使用场景
当遇到以下情况时,可以考虑使用函数重写器:
- PyTorch原生函数在目标推理引擎中不支持
- 第三方库函数需要特殊处理才能转换
- 需要优化某些函数的实现以提高推理效率
代码示例解析
from mmdeploy.core import FUNCTION_REWRITER
@FUNCTION_REWRITER.register_rewriter(
func_name='torch.Tensor.repeat', backend='tensorrt')
def repeat_static(input, *size):
ctx = FUNCTION_REWRITER.get_context()
origin_func = ctx.origin_func
if input.dim() == 1 and len(size) == 1:
return origin_func(input.unsqueeze(0), *([1] + list(size))).squeeze(0)
else:
return origin_func(input, *size)
这个例子展示了如何为TensorRT后端重写torch.Tensor.repeat
函数。当输入是一维张量且只有一个size参数时,会先将其扩展为二维再进行repeat操作,最后再压缩回一维。
关键参数说明
func_name
: 需要重写的函数全名,可以是PyTorch内置函数或自定义函数backend
: 指定重写生效的后端引擎,不指定则作为默认实现ctx
: 上下文对象,提供原始函数、部署配置等有用信息
模块重写器(Module Rewriter)
基本概念
模块重写器用于替换整个神经网络模块,比函数重写器作用范围更大。当需要对模型中的某个子网络进行整体替换时,这个工具特别有用。
使用场景
- 整个模块在目标引擎中不被支持
- 需要优化模块实现以提高推理性能
- 模块中包含无法转换的控制流或动态结构
代码示例解析
@MODULE_REWRITER.register_rewrite_module(
'mmagic.models.backbones.sr_backbones.SRCNN', backend='tensorrt')
class SRCNNWrapper(nn.Module):
def __init__(self, module, cfg, channels=(3, 64, 32, 3),
kernel_sizes=(9, 1, 5), upscale_factor=4):
super(SRCNNWrapper, self).__init__()
self._module = module
module.img_upsampler = nn.Upsample(
scale_factor=module.upscale_factor,
mode='bilinear',
align_corners=False)
这个例子展示了如何为SRCNN模型创建一个TensorRT兼容的包装器。它在初始化时修改了原始模块的上采样器实现。
关键参数说明
module_type
: 需要重写的模块类全名backend
: 指定重写生效的后端引擎- 构造函数接收原始模块实例和部署配置作为前两个参数
符号重写器(Symbolic Rewriter)
基本概念
符号重写器专门用于处理PyTorch到ONNX的符号转换问题。它允许开发者自定义PyTorch操作到ONNX节点的映射规则。
使用场景
- PyTorch操作没有对应的ONNX实现
- 默认的ONNX转换结果不被目标推理引擎支持
- 需要优化ONNX图结构以提高推理效率
代码示例解析
@SYMBOLIC_REWRITER.register_symbolic('squeeze', is_pytorch=True)
def squeeze_default(g, self, dim=None):
if dim is None:
dims = []
for i, size in enumerate(self.type().sizes()):
if size == 1:
dims.append(i)
else:
dims = [sym_help._get_const(dim, 'i', 'dim')]
return g.op('Squeeze', self, axes_i=dims)
这个例子展示了如何自定义squeeze
操作的ONNX符号转换。它处理了dim参数为None时自动检测可压缩维度的情况。
关键参数说明
func_name
: 需要重写的函数名is_pytorch
: 标记是否为PyTorch内置函数arg_descriptors
: 符号函数参数的描述符g
: ONNX图的构建器对象self
: 操作的输入张量
最佳实践
- 优先使用函数级重写:尽可能在函数级别解决问题,保持修改范围最小化
- 考虑多后端兼容性:为不同后端提供特定的重写实现
- 保留原始功能:在重写实现中尽量保留原始函数/模块的语义
- 充分测试:重写后应在目标引擎上验证数值精度和性能
总结
MMDeploy提供的三种重写工具覆盖了模型转换过程中的不同层次需求。理解这些工具的特点和适用场景,可以帮助开发者高效解决模型部署中的兼容性问题。在实际应用中,通常需要结合使用这些工具,才能完成复杂模型的完整转换。
通过本文的介绍,希望读者能够掌握为MMDeploy添加新模型支持的核心方法,在实际项目中灵活运用这些工具解决模型部署难题。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考