MAPIE项目中的置信度评分理论详解
引言
在机器学习模型的预测不确定性量化领域,置信度评分(Conformity Scores)是构建预测区间的核心组件。本文将深入解析MAPIE库中实现的三种主要置信度评分方法,帮助读者理解其数学原理和应用场景。
置信度评分基础概念
置信度评分函数s(X,Y)∈ℝ的核心要求是:较大的评分值应表示X与Y之间较差的匹配程度。MAPIE通过BaseRegressionScore
基类实现了这一抽象概念,支持用户自定义评分方法。
评分方法可分为两类:
- 对称评分:在计算预测区间边界时需要同时计算分布左右两侧的分位数
- 非对称评分:仅需计算单侧分位数
1. 绝对残差评分(Absolute Residual Score)
实现类:AbsoluteConformityScore
数学表达式:
|Y-μ̂(X)|
预测区间计算:
[μ̂(X) - q(s), μ̂(X) + q(s)]
其中q(s)是置信度分数在(1-α)水平的分位数。
特点:
- 默认采用对称评分策略
- 产生固定宽度的预测区间
- 计算简单直接,是回归问题中最常用的基础评分方法
适用场景:当预测误差在不同区域分布均匀时,这种简单方法效果良好。
2. Gamma评分(Gamma Conformity Score)
实现类:GammaConformityScore
数学表达式:
|Y-μ̂(X)|/μ̂(X)
预测区间计算:
[μ̂(X)*(1 - q(s)), μ̂(X)*(1 + q(s))]
特点:
- 默认采用非对称评分策略
- 产生与预测值成比例的区间宽度
- 不确定性随预测值增大而增大
适用场景:适用于预测目标值范围较大,且期望不确定性随预测值规模变化的场景,如金融预测、销售预测等。
3. 残差归一化评分(Residual Normalised Score)
实现类:ResidualNormalisedScore
数学表达式:
|Y-μ̂(X)|/σ̂(X)
其中σ̂(X)是额外训练的模型,用于预测基模型在X处的残差。
预测区间计算:
[μ̂(X) - q(s)*σ̂(X), μ̂(X) + q(s)*σ̂(X)]
特点:
- 默认采用对称评分策略
- 需要训练辅助模型σ̂
- 区间宽度与输入特征X相关
- 仅适用于分折(分折)方法
适用场景:当预测误差在不同特征区域有明显差异时,这种方法能提供更精确的不确定性估计。
方法对比与选择指南
| 评分方法 | 区间特性 | 计算复杂度 | 适用场景 | |---------|---------|-----------|---------| | 绝对残差 | 固定宽度 | 最低 | 误差分布均匀的简单问题 | | Gamma评分 | 比例宽度 | 中等 | 预测值范围大的比例问题 | | 残差归一化 | 自适应宽度 | 最高 | 误差与特征相关的复杂问题 |
实践建议
- 从简单开始:首先尝试绝对残差评分,作为基准方法
- 考虑数据特性:如果预测值范围很大,考虑Gamma评分
- 复杂场景:当有足够计算资源且误差模式复杂时,使用残差归一化评分
- 模型验证:无论选择哪种方法,都应通过回测验证预测区间的实际覆盖率
总结
MAPIE提供了灵活的置信度评分框架,从最简单的绝对残差到复杂的残差归一化方法,满足不同场景下的不确定性量化需求。理解这些方法的数学原理和适用条件,有助于在实际问题中选择最合适的评分策略。
通过合理选择和使用这些方法,可以显著提升机器学习模型预测结果的可信度和实用性。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考