基于Hamilton项目的网页抓取与分块处理技术解析

基于Hamilton项目的网页抓取与分块处理技术解析

概述

在现代RAG(检索增强生成)数据流处理中,网页抓取(Scraping)和内容分块(Chunking)是构建知识库的关键前置步骤。本文将深入解析如何利用Apache Hamilton框架优雅地实现这一流程,避免传统方法中常见的控制流耦合问题。

传统方法的痛点

在常规Python实现中,开发者通常需要手动处理并发控制逻辑,例如使用ThreadPoolExecutor管理多线程任务。这种实现方式存在几个明显问题:

  1. 代码耦合度高:业务逻辑与并发控制逻辑混杂在一起
  2. 可测试性差:难以对单个处理函数进行单元测试
  3. 可重用性低:并发逻辑无法轻松复用于其他场景

典型实现代码往往如下所示:

def scrape(urls: list) -> list:
    all_data = []
    with concurrent.futures.ThreadPoolExecutor(max_workers=MAX) as executor:
        futures = [executor.submit(some_func, url) for url in urls]
        # ...进度条和结果收集逻辑...
    return all_data

Hamilton的解决方案

Apache Hamilton采用声明式编程范式,将业务逻辑与执行逻辑解耦。开发者只需关注数据处理步骤本身,而并行控制则由框架自动处理。

核心概念

  1. 数据流图(DAG):将处理流程建模为有向无环图
  2. 并行化标记:通过ParallelizableCollect类型声明并行边界
  3. 执行器无关:同一套代码可运行在不同执行引擎上

实现示例

一个典型的网页处理流程可分为以下步骤:

def article_regex() -> str:
    """定义匹配文章正文的正则表达式"""
    return r'<article role="main" id="furo-main-content">(.*?)</article>'

def article_text(url: str, article_regex: str) -> str:
    """获取URL并提取相关内容"""
    html = requests.get(url)
    article = re.findall(article_regex, html.text, re.DOTALL)
    return article[0].strip()

def processed_article(article_text: str) -> list:
    """处理文章内容"""
    return article_text

并行化实现

通过特殊类型标记实现优雅的并行处理:

def url(urls_from_sitemap: list[str]) -> Parallelizable[str]:
    """并行化输入"""
    for url in urls_from_sitemap:
        yield url

def collect_processed_articles(processed_article: Collect[list]) -> list:
    """收集并行结果"""
    return list(processed_article)

完整处理流程

整个处理流程可分为六个清晰阶段:

  1. 站点地图解析:从sitemap.xml提取URL列表
  2. 并行任务分发:框架自动将URL分发到不同工作节点
  3. 网页内容抓取:每个节点独立获取指定URL内容
  4. HTML正文提取:使用正则表达式提取有效内容
  5. 内容分块处理:将大文本分割为适合处理的片段
  6. 结果归集:框架自动收集所有处理结果

多执行引擎支持

Hamilton的强大之处在于同一套业务逻辑可以无缝运行在不同执行引擎上:

  1. 本地执行:单进程调试和测试
  2. Dask集群:适合中等规模数据处理
  3. Ray集群:适合大规模分布式计算
  4. Spark集群:企业级大数据处理

项目结构说明

主要代码文件分工明确:

  • doc_pipeline.py:核心业务逻辑定义
  • run_*.py:不同执行引擎的驱动脚本
  • spark/目录:Spark特定实现版本

扩展应用场景

基于此基础框架,可以轻松扩展更多功能:

  1. 向量嵌入生成:添加嵌入模型处理步骤
  2. 结果持久化:集成数据库存储功能
  3. 速率控制:添加请求限流机制
  4. 质量监控:加入内容质量检查步骤

技术优势总结

相比传统实现方式,Hamilton方案具有以下优势:

  1. 关注点分离:业务逻辑与执行逻辑解耦
  2. 代码可维护性:每个函数职责单一,易于测试
  3. 执行灵活性:同一套代码适应不同规模场景
  4. 扩展便捷性:新功能可通过添加节点实现

这种设计模式特别适合需要频繁迭代和扩展的数据处理流程,为构建复杂的LLM工作流提供了坚实的基础架构。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余印榕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值