基于Hamilton项目的网页抓取与分块处理技术解析
概述
在现代RAG(检索增强生成)数据流处理中,网页抓取(Scraping)和内容分块(Chunking)是构建知识库的关键前置步骤。本文将深入解析如何利用Apache Hamilton框架优雅地实现这一流程,避免传统方法中常见的控制流耦合问题。
传统方法的痛点
在常规Python实现中,开发者通常需要手动处理并发控制逻辑,例如使用ThreadPoolExecutor
管理多线程任务。这种实现方式存在几个明显问题:
- 代码耦合度高:业务逻辑与并发控制逻辑混杂在一起
- 可测试性差:难以对单个处理函数进行单元测试
- 可重用性低:并发逻辑无法轻松复用于其他场景
典型实现代码往往如下所示:
def scrape(urls: list) -> list:
all_data = []
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX) as executor:
futures = [executor.submit(some_func, url) for url in urls]
# ...进度条和结果收集逻辑...
return all_data
Hamilton的解决方案
Apache Hamilton采用声明式编程范式,将业务逻辑与执行逻辑解耦。开发者只需关注数据处理步骤本身,而并行控制则由框架自动处理。
核心概念
- 数据流图(DAG):将处理流程建模为有向无环图
- 并行化标记:通过
Parallelizable
和Collect
类型声明并行边界 - 执行器无关:同一套代码可运行在不同执行引擎上
实现示例
一个典型的网页处理流程可分为以下步骤:
def article_regex() -> str:
"""定义匹配文章正文的正则表达式"""
return r'<article role="main" id="furo-main-content">(.*?)</article>'
def article_text(url: str, article_regex: str) -> str:
"""获取URL并提取相关内容"""
html = requests.get(url)
article = re.findall(article_regex, html.text, re.DOTALL)
return article[0].strip()
def processed_article(article_text: str) -> list:
"""处理文章内容"""
return article_text
并行化实现
通过特殊类型标记实现优雅的并行处理:
def url(urls_from_sitemap: list[str]) -> Parallelizable[str]:
"""并行化输入"""
for url in urls_from_sitemap:
yield url
def collect_processed_articles(processed_article: Collect[list]) -> list:
"""收集并行结果"""
return list(processed_article)
完整处理流程
整个处理流程可分为六个清晰阶段:
- 站点地图解析:从sitemap.xml提取URL列表
- 并行任务分发:框架自动将URL分发到不同工作节点
- 网页内容抓取:每个节点独立获取指定URL内容
- HTML正文提取:使用正则表达式提取有效内容
- 内容分块处理:将大文本分割为适合处理的片段
- 结果归集:框架自动收集所有处理结果
多执行引擎支持
Hamilton的强大之处在于同一套业务逻辑可以无缝运行在不同执行引擎上:
- 本地执行:单进程调试和测试
- Dask集群:适合中等规模数据处理
- Ray集群:适合大规模分布式计算
- Spark集群:企业级大数据处理
项目结构说明
主要代码文件分工明确:
doc_pipeline.py
:核心业务逻辑定义run_*.py
:不同执行引擎的驱动脚本spark/
目录:Spark特定实现版本
扩展应用场景
基于此基础框架,可以轻松扩展更多功能:
- 向量嵌入生成:添加嵌入模型处理步骤
- 结果持久化:集成数据库存储功能
- 速率控制:添加请求限流机制
- 质量监控:加入内容质量检查步骤
技术优势总结
相比传统实现方式,Hamilton方案具有以下优势:
- 关注点分离:业务逻辑与执行逻辑解耦
- 代码可维护性:每个函数职责单一,易于测试
- 执行灵活性:同一套代码适应不同规模场景
- 扩展便捷性:新功能可通过添加节点实现
这种设计模式特别适合需要频繁迭代和扩展的数据处理流程,为构建复杂的LLM工作流提供了坚实的基础架构。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考