FederatedScope快速入门指南:联邦学习实战教程

FederatedScope快速入门指南:联邦学习实战教程

联邦学习与FederatedScope简介

联邦学习(Federated Learning, FL)是一种新兴的机器学习范式,它允许多个数据拥有方在不直接共享原始数据的情况下协作训练模型。这种技术特别适用于医疗、金融等对数据隐私要求严格的领域。

FederatedScope是一个基于消息传递框架的联邦学习综合平台,具有以下核心优势:

  1. 易用性:提供简洁的API和丰富的预置组件
  2. 灵活性:支持快速定制特定任务的联邦学习流程
  3. 全面性:覆盖计算机视觉、自然语言处理、图学习等多种应用场景

本文将带领您快速上手FederatedScope,完成一个完整的联邦学习任务。

环境配置与初始化

FederatedScope使用yacs.config.cfgNode来管理系统配置。我们先初始化全局配置:

from federatedscope.core.configs.config import global_cfg

cfg = global_cfg.clone()
print(cfg)

这将输出默认配置参数,我们可以在此基础上进行修改以适应具体任务需求。

实战步骤详解

1. 数据准备

FederatedScope内置了DataZoo,支持自动下载和预处理多种公开数据集。以下示例使用FEMNIST数据集(联邦环境下的手写数字数据集):

from federatedscope.core.auxiliaries.data_builder import get_data

# 配置数据集参数
cfg.data.type = 'femnist'
cfg.data.splits = [0.6, 0.2, 0.2]  # 训练/验证/测试集划分比例
cfg.data.batch_size = 10
cfg.data.subsample = 0.05  # 使用5%的数据作为示例
cfg.data.transform = [
    ['ToTensor'], 
    ['Normalize', {'mean': [0.9637], 'std': [0.1592]}]
    
# 获取数据
data, modified_cfg = get_data(cfg.clone())
cfg.merge_from_other_cfg(modified_cfg)

关键参数说明:

  • subsample:在小规模实验时可减少数据量加速训练
  • transform:定义数据预处理流程,此处包含张量转换和标准化

2. 模型选择

FederatedScope的ModelZoo提供了多种预置模型架构。我们选择ConvNet2作为示例:

cfg.model.type = 'convnet2'
cfg.model.out_channels = 62  # FEMNIST有62个类别

3. 联邦学习任务配置

配置联邦学习的关键参数:

# 基础设置
cfg.use_gpu = False  # 示例使用CPU
cfg.eval.freq = 10  # 每10轮评估一次
cfg.eval.metrics = ['acc', 'loss_regular']  # 评估指标

# 联邦学习设置
cfg.federate.mode = 'standalone'  # 独立模式
cfg.federate.local_update_steps = 5  # 客户端本地训练步数
cfg.federate.total_round_num = 20  # 总通信轮数
cfg.federate.sample_client_num = 5  # 每轮采样的客户端数
cfg.federate.client_num = 10  # 总客户端数

# 训练参数
cfg.train.optimizer.lr = 0.001  # 学习率
cfg.train.optimizer.weight_decay = 0.0  # 权重衰减
cfg.grad.grad_clip = 5.0  # 梯度裁剪阈值

# 其他设置
cfg.criterion.type = 'CrossEntropyLoss'  # 损失函数
cfg.trainer.type = 'cvtrainer'  # 训练器类型
cfg.seed = 123  # 随机种子

4. 初始化与日志设置

from federatedscope.core.auxiliaries.utils import setup_seed
from federatedscope.core.auxiliaries.logging import update_logger

# 设置随机种子保证可复现性
setup_seed(cfg.seed)

# 配置日志系统
update_logger(cfg)

5. 启动联邦学习任务

from federatedscope.core.fed_runner import FedRunner
from federatedscope.core.auxiliaries.worker_builder import get_server_cls, get_client_cls

# 创建联邦学习运行器
Fed_runner = FedRunner(
    data=data,
    server_class=get_server_cls(cfg),
    client_class=get_client_cls(cfg),
    config=cfg.clone()
)

# 开始训练
Fed_runner.run()

执行后将输出训练过程中的各项指标,包括准确率(acc)和正则化损失(loss_regular)。

进阶建议

完成本教程后,您可以尝试:

  1. 修改配置参数体验不同设置的效果
  2. 尝试其他内置数据集和模型架构
  3. 探索分布式模式(修改cfg.federate.mode
  4. 添加自定义组件(模型、数据集等)

FederatedScope的强大之处在于其灵活性和可扩展性,您可以根据实际需求轻松定制各种联邦学习场景。

通过本教程,您已经掌握了使用FederatedScope进行联邦学习的基本流程。接下来可以深入探索更复杂的应用场景和高级功能,构建符合您特定需求的联邦学习系统。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/790f7ffa6527 在一维运动场景中,小车从初始位置 x=-100 出发,目标是到达 x=0 的位置,位置坐标 x 作为受控对象,通过增量式 PID 控制算法调节小车的运动状态。 系统采用的位置迭代公式为 x (k)=x (k-1)+v (k-1) dt,其中 dt 为仿真过程中的恒定时间间隔,因此速度 v 成为主要的调节量。通过调节速度参数,实现对小车位置的精确控制,最终生成位置 - 时间曲线的仿真结果。 在参数调节实验中,比例调节系数 Kp 的影响十分显著。从仿真曲线可以清晰观察到,当增大 Kp 值时,系统的响应速度明显加快,小车能够更快地收敛到目标位置,缩短了稳定时间。这表明比例调节在加快系统响应方面发挥着关键作用,适当增大比例系数可有效提升系统的动态性能。 积分调节系数 Ki 的调节则呈现出不同的特性。实验数据显示,当增大 Ki 值时,系统运动过程中的波动幅度明显增大,位置曲线出现更剧烈的震荡。但与此同时,小车位置的变化速率也有所提高,在动态调整过程中能够更快地接近目标值。这说明积分调节虽然会增加系统的波动性,但对加快位置变化过程具有积极作用。 通过一系列参数调试实验,清晰展现了比例系数和积分系数在增量式 PID 控制系统中的不同影响规律,为优化控制效果提供了直观的参考依据。合理匹配 Kp 和 Ki 参数,能够在保证系统稳定性的同时,兼顾响应速度和调节精度,实现小车位置的高效控制。
<think>好的,用户想了解联邦学习的基准模型或实现方法,特别是具体的代码方案。首先,我需要回忆联邦学习的基本分类,根据之前的引用,联邦学习分为横向、纵向和迁移三种类型。用户提到的是baseline实现,所以应该从最简单的横向联邦学习入手,因为这是最常见的场景,比如多个手机设备联合训练模型。 接下来,我需要考虑如何构建一个简单的联邦学习框架。通常,联邦学习包括客户端和服务器端。客户端负责本地训练,服务器负责聚合模型参数。代码方面,可能需要使用PyTorch或者TensorFlow框架。考虑到用户可能需要一个容易理解的例子,选择PyTorch可能更合适,因为它的动态图特性更直观。 然后,我需要设计一个简单的模型结构,比如多层感知机(MLP),用于分类任务。数据分布方面,需要模拟不同客户端的数据,这里可以用MNIST数据集,并按横向划分,即每个客户端有部分样本,但特征相同。例如,每个客户端有不同类别的数据,或者相同类别的不同样本。 客户端训练部分,每个客户端需要加载自己的数据,进行本地训练,计算梯度,并将模型参数上传到服务器。服务器端则聚合所有客户端的参数,通常采用FedAvg算法,即对参数取平均值。然后,服务器将聚合后的参数下发给各客户端,进行下一轮训练。 代码结构方面,需要定义模型、数据加载、训练循环和参数聚合。需要注意的是,实际联邦学习可能涉及加密和通信,但作为baseline,可以简化这部分,直接模拟参数传递。 最后,需要验证代码的正确性,确保模型能够正常训练,损失逐渐下降。同时,可能需要添加评估函数,在测试集上评估模型性能。此外,还要考虑如何扩展代码到纵向联邦学习,但用户当前的需求是baseline,横向已经足够。 总结步骤:导入库、定义模型、数据划分、客户端训练函数、服务器聚合函数、主训练循环。确保代码简洁,注释清晰,方便用户理解和修改。同时,根据引用[1][2][3],可以指出不同联邦学习类型的适用场景,帮助用户选择合适的方法。</think>以下为联邦学习的基准实现方案及代码示例,包含横向联邦学习的基本框架: ### 联邦学习基准实现方案 #### 1. 系统架构设计 横向联邦学习包含两个核心组件: - 客户端:进行本地模型训练,保留数据隐私$y = f_w(x)$ - 服务器:聚合模型参数$\theta_{global} = \frac{1}{N}\sum_{i=1}^N \theta_i$ [^3] #### 2. PyTorch代码实现 ```python import torch from torch import nn, optim from torchvision import datasets, transforms # 定义共享模型 class MLP(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential( nn.Linear(784, 128), nn.ReLU(), nn.Linear(128, 10) ) def forward(self, x): return self.layers(x) # 客户端训练函数 def client_update(model, dataloader, epochs=1): criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) model.train() for _ in range(epochs): for data, target in dataloader: optimizer.zero_grad() output = model(data.view(-1, 784)) loss = criterion(output, target) loss.backward() optimizer.step() return model.state_dict() # 服务器参数聚合 def server_aggregate(global_model, client_models): global_dict = global_model.state_dict() # FedAvg算法实现 for key in global_dict: global_dict[key] = torch.stack( [client_models[i][key] for i in range(len(client_models))], 0 ).mean(0) global_model.load_state_dict(global_dict) return global_model # 模拟训练流程 if __name__ == "__main__": # 初始化全局模型 global_model = MLP() # 模拟5个客户端 num_clients = 5 client_models = [MLP() for _ in range(num_clients)] # 加载横向划分的MNIST数据 transform = transforms.Compose([transforms.ToTensor()]) train_datasets = [ datasets.MNIST('./data', train=True, download=True, transform=transform) for _ in range(num_clients) ] # 联邦训练 for round in range(10): # 10轮通信 client_params = [] for i in range(num_clients): # 客户端下载全局模型 client_models[i].load_state_dict(global_model.state_dict()) # 本地训练 dataloader = torch.utils.data.DataLoader( train_datasets[i], batch_size=32, shuffle=True) params = client_update(client_models[i], dataloader) client_params.append(params) # 服务器聚合 global_model = server_aggregate(global_model, client_params) ``` #### 3. 关键实现要点 - 数据划分:每个客户端获得MNIST数据的横向划分$D_i = \{x_j^{(i)}, y_j^{(i)}\}_{j=1}^{n_i}$ [^2] - 通信协议:每轮训练包含参数下载->本地训练->参数上传 - 隐私保护:基线方案未包含加密机制,实际应用需添加安全聚合协议
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谭勇牧Queen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值