FederatedScope快速入门指南:联邦学习实战教程
联邦学习与FederatedScope简介
联邦学习(Federated Learning, FL)是一种新兴的机器学习范式,它允许多个数据拥有方在不直接共享原始数据的情况下协作训练模型。这种技术特别适用于医疗、金融等对数据隐私要求严格的领域。
FederatedScope是一个基于消息传递框架的联邦学习综合平台,具有以下核心优势:
- 易用性:提供简洁的API和丰富的预置组件
- 灵活性:支持快速定制特定任务的联邦学习流程
- 全面性:覆盖计算机视觉、自然语言处理、图学习等多种应用场景
本文将带领您快速上手FederatedScope,完成一个完整的联邦学习任务。
环境配置与初始化
FederatedScope使用yacs.config.cfgNode
来管理系统配置。我们先初始化全局配置:
from federatedscope.core.configs.config import global_cfg
cfg = global_cfg.clone()
print(cfg)
这将输出默认配置参数,我们可以在此基础上进行修改以适应具体任务需求。
实战步骤详解
1. 数据准备
FederatedScope内置了DataZoo,支持自动下载和预处理多种公开数据集。以下示例使用FEMNIST数据集(联邦环境下的手写数字数据集):
from federatedscope.core.auxiliaries.data_builder import get_data
# 配置数据集参数
cfg.data.type = 'femnist'
cfg.data.splits = [0.6, 0.2, 0.2] # 训练/验证/测试集划分比例
cfg.data.batch_size = 10
cfg.data.subsample = 0.05 # 使用5%的数据作为示例
cfg.data.transform = [
['ToTensor'],
['Normalize', {'mean': [0.9637], 'std': [0.1592]}]
# 获取数据
data, modified_cfg = get_data(cfg.clone())
cfg.merge_from_other_cfg(modified_cfg)
关键参数说明:
subsample
:在小规模实验时可减少数据量加速训练transform
:定义数据预处理流程,此处包含张量转换和标准化
2. 模型选择
FederatedScope的ModelZoo提供了多种预置模型架构。我们选择ConvNet2作为示例:
cfg.model.type = 'convnet2'
cfg.model.out_channels = 62 # FEMNIST有62个类别
3. 联邦学习任务配置
配置联邦学习的关键参数:
# 基础设置
cfg.use_gpu = False # 示例使用CPU
cfg.eval.freq = 10 # 每10轮评估一次
cfg.eval.metrics = ['acc', 'loss_regular'] # 评估指标
# 联邦学习设置
cfg.federate.mode = 'standalone' # 独立模式
cfg.federate.local_update_steps = 5 # 客户端本地训练步数
cfg.federate.total_round_num = 20 # 总通信轮数
cfg.federate.sample_client_num = 5 # 每轮采样的客户端数
cfg.federate.client_num = 10 # 总客户端数
# 训练参数
cfg.train.optimizer.lr = 0.001 # 学习率
cfg.train.optimizer.weight_decay = 0.0 # 权重衰减
cfg.grad.grad_clip = 5.0 # 梯度裁剪阈值
# 其他设置
cfg.criterion.type = 'CrossEntropyLoss' # 损失函数
cfg.trainer.type = 'cvtrainer' # 训练器类型
cfg.seed = 123 # 随机种子
4. 初始化与日志设置
from federatedscope.core.auxiliaries.utils import setup_seed
from federatedscope.core.auxiliaries.logging import update_logger
# 设置随机种子保证可复现性
setup_seed(cfg.seed)
# 配置日志系统
update_logger(cfg)
5. 启动联邦学习任务
from federatedscope.core.fed_runner import FedRunner
from federatedscope.core.auxiliaries.worker_builder import get_server_cls, get_client_cls
# 创建联邦学习运行器
Fed_runner = FedRunner(
data=data,
server_class=get_server_cls(cfg),
client_class=get_client_cls(cfg),
config=cfg.clone()
)
# 开始训练
Fed_runner.run()
执行后将输出训练过程中的各项指标,包括准确率(acc)和正则化损失(loss_regular)。
进阶建议
完成本教程后,您可以尝试:
- 修改配置参数体验不同设置的效果
- 尝试其他内置数据集和模型架构
- 探索分布式模式(修改
cfg.federate.mode
) - 添加自定义组件(模型、数据集等)
FederatedScope的强大之处在于其灵活性和可扩展性,您可以根据实际需求轻松定制各种联邦学习场景。
通过本教程,您已经掌握了使用FederatedScope进行联邦学习的基本流程。接下来可以深入探索更复杂的应用场景和高级功能,构建符合您特定需求的联邦学习系统。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考