tcapy:Python库实现交易成本分析
项目介绍
tcapy 是一个用于交易成本分析(TCA)的 Python 库,其核心功能是计算交易活动的成本。交易成本分析在金融市场中至关重要,无论是买方还是卖方机构,都会在TCA上投入大量资金。据 MarketsMedia 报告,典型的买方股票交易台每年在TCA上的花费约为 225,000 美元。许多卖方公司和大型买方公司都会开发和维护自己的TCA库,这是一项昂贵的投资。整个行业的TCA成本可能高达数亿美元。
TCA 的复杂性主要在于处理大量的市场数据并对其进行计算,这主要是软件工程问题。这项工作在每次实施时都需要重复进行。通过开源tcapy库,开发者希望整个行业不再需要在TCA上重复造轮子。同时,由于所有代码都对用户可见,tcapy 允许用户添加自定义指标和基准,这在金融市场中可能是非常特定的知识产权。
项目技术分析
tcapy 作为首个开源的TCA库,支持在本地硬件上运行,因此交易/订单数据可以保持私密。自2017年6月开始开发,最初为一家大型资产管理公司设计,并于2020年3月开源。tcapy 的设计思路是供应商无关,支持多种数据库类型用于存储市场数据和交易/订单数据,包括 Arctic/MongoDB、KDB 和 InfluxDB,以及 MySQL、PostgreSQL 和 Microsoft SQL Server。
此外,tcapy 通过分布式计算和大量使用缓存来提高性能。未来计划增加功能,使其易于在云上使用无服务器计算。由于用户可以看到所有代码,TCA过程完全透明,这对于出于监管目的进行TCA的企业尤其重要。
项目技术应用场景
tcapy 适用于多种交易场景,尤其对于需要遵守法规(如 MiFID II)的买方公司,它们需要展示最佳执行。通过分析流动性提供者、执行风格等,可以降低交易成本,从而增加阿尔法收益。目前,tcapy 支持外汇现货交易数据,未来计划增加其他资产类别的支持。它还包含了一些专门针对外汇交易的功能,如数据格式转换和生成合成交叉汇率。
项目特点
- 开源透明:tcapy 作为开源项目,用户可以看到所有代码,使得TCA过程完全透明。
- 灵活定制:用户可以根据需要添加自定义指标和基准。
- 供应商无关:支持多种数据库类型,方便用户根据自己的需求选择。
- 高性能计算:通过分布式计算和缓存优化,提高计算效率。
- 支持多种数据源:用户可以自由选择不同的市场数据源。
- 多平台支持:在 Linux 和 Windows 系统上均有良好支持。
使用方式多样
tcapy 提供了多种使用方式,包括:
- 通过基于 Dash 的 Web GUI;
- 通过命令行或集成开发环境(IDE)等编程方式;
- 在 Jupyter 笔记本中进行交互式研究;
- 通过 Excel 电子表格和 xlwings;
- 通过 RESTful API(目前功能较基础)。
此外,tcapy 提供了详细的 Jupyter 笔记本教程,帮助用户快速上手和理解如何使用tcapy进行各种TCA计算。
通过上述功能和特点,tcapy 无疑是一个值得金融行业专业人士关注和使用的开源项目。它不仅有助于降低交易成本,还能提高交易活动的透明度和效率,是金融市场上不可或缺的工具之一。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考