深入理解all-umass/metric-learn中的监督度量学习
什么是监督度量学习
监督度量学习是机器学习中一个重要的分支,它通过学习一个优化的距离度量,使得同类样本之间的距离尽可能小,不同类样本之间的距离尽可能大。all-umass/metric-learn项目提供了多种监督度量学习算法的实现,这些算法能够有效地改善分类和回归任务的性能。
监督度量学习的基本原理
监督度量学习算法的核心思想是通过学习一个转换矩阵,将原始数据投影到一个新的特征空间。在这个空间中:
- 同类样本之间的距离被最小化
- 不同类样本之间的距离被最大化
这种学习方式特别适合k近邻分类器等基于距离的机器学习算法。
监督度量学习的通用API
all-umass/metric-learn项目采用了与scikit-learn相似的API设计,这使得它能够无缝集成到现有的scikit-learn工作流中。
输入数据格式
监督度量学习算法需要两个主要输入:
- 特征矩阵X:形状为(n_samples, n_features)的二维数组
- 标签向量y:形状为(n_samples,)的一维数组
import numpy as np
X = np.array([[2.3, 3.6], [0.2, 0.5], [6.7, 2.1]])
y = np.array(['dog', 'cat', 'dog'])
模型训练与转换
训练过程与scikit-learn的常规流程一致:
from metric_learn import NCA
nca = NCA(random_state=42)
nca.fit(X, y)
训练完成后,可以使用transform方法将新数据转换到学习到的空间:
X_new = np.array([[9.4, 4.1], [2.1, 4.4]])
nca.transform(X_new)
距离计算
训练好的度量学习器提供了多种距离计算方式:
- 计算点对之间的距离:
nca.pair_distance([[[3.5, 3.6], [5.6, 2.4]]])
- 获取距离计算函数:
metric_fun = nca.get_metric()
metric_fun([3.5, 3.6], [5.6, 2.4])
- 计算点对相似度得分:
nca.pair_score([[[3.5, 3.6], [5.6, 2.4]]])
主要监督度量学习算法
1. 大间隔最近邻(LMNN)
LMNN算法通过学习一个马氏距离度量,使得每个样本的k个最近邻都属于同一类别,同时不同类别的样本被一个大间隔分开。
数学原理: LMNN通过优化以下目标函数学习距离度量:
min_L(∑η_ij||L(x_i-x_j)||² + c∑η_ij(1-y_il)[1+||L(x_i-x_j)||²-||L(x_i-x_l)||²]+)
应用示例:
from metric_learn import LMNN
lmnn = LMNN(n_neighbors=5, learn_rate=1e-6)
lmnn.fit(X, y)
2. 邻域成分分析(NCA)
NCA算法直接最大化留一法k近邻分类的准确率,可以同时用于降维和数据可视化。
数学原理: NCA通过softmax概率定义样本间的相似性:
p_ij = exp(-||Lx_i-Lx_j||²)/∑exp(-||Lx_i-Lx_l||²)
然后最大化正确分类概率的总和。
应用示例:
from metric_learn import NCA
nca = NCA(max_iter=1000)
nca.fit(X, y)
3. 局部Fisher判别分析(LFDA)
LFDA结合了线性判别分析和局部保持投影的思想,特别适合多模态数据。
数学原理: LFDA通过优化局部Fisher散度矩阵的广义特征值问题来学习变换矩阵。
应用示例:
from metric_learn import LFDA
lfda = LFDA(k=2, dim=2)
lfda.fit(X, y)
4. 核回归度量学习(MLKR)
MLKR通过最小化留一回归误差直接学习距离函数,可用于回归任务和降维。
数学原理: MLKR使用高斯核和Mahalanobis距离,通过最小化回归误差学习距离度量。
应用示例:
from metric_learn import MLKR
mlkr = MLKR()
mlkr.fit(X, y)
监督版本的弱监督算法
all-umass/metric-learn还提供了弱监督算法的监督版本,这些版本会自动从标签信息生成相似性约束:
from metric_learn import MMC_Supervised
mmc = MMC_Supervised(n_constraints=200)
mmc.fit(X, y)
实际应用建议
- 数据预处理:在使用度量学习算法前,建议对数据进行标准化处理
- 参数调优:不同算法有不同的关键参数,如LMNN的n_neighbors,需要通过交叉验证选择
- 计算效率:对于大规模数据,可以考虑使用随机采样的方式生成约束对
- 可视化:学习到的度量可以用于数据可视化,帮助理解数据结构
监督度量学习为基于距离的机器学习任务提供了强大的工具,all-umass/metric-learn项目的实现使得这些先进算法能够方便地应用于实际问题中。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考